
MUSE: Multi-query Event Trend Aggregation
Allison Rozet

Worcester Polytechnic Institute
Worcester, MA

amrozet@wpi.edu

Olga Poppe
Microsoft Gray Systems Lab

Redmond, WA
olpoppe@microsoft.com

Chuan Lei
IBM Research - Almaden

San Jose, CA
chuan.lei@ibm.com

Elke A. Rundensteiner
Worcester Polytechnic Institute

Worcester, MA
rundenst@wpi.edu

ABSTRACT

Streaming analytics deploy Kleene pattern queries to detect and ag-
gregate event trends on high-rate data streams. Despite increasing
workloads, most state-of-the-art systems process each query inde-
pendently, thus missing cost-saving sharing opportunities. Sharing
event trend aggregation poses several technical challenges. First,
Kleene patterns are in general difficult to share due to complex nest-
ing and arbitrarily long matches. Second, not all sharing opportuni-
ties are beneficial because sharing Kleene patterns incurs non-trivial
overhead to ensure the correctness of final aggregation results. We
propose Muse (Multi-query Shared Event trend aggregation), the
first framework that shares aggregation queries with Kleene pat-
terns while avoiding expensive trend construction. To find the
beneficial sharing plan, the Muse optimizer effectively selects ro-
bust sharing candidates from the exponentially large search space.
Our experiments demonstrate that Muse increases throughput by
4 orders of magnitude compared to state-of-the-art approaches.
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1 INTRODUCTION

Motivation. Industries such as transportation, finance, and adver-
tising use Complex Event Processing (CEP) technologies to extract
insights from high-velocity event streams using Kleene pattern
queries [1, 15]. While traditional pattern queries return fixed-length
sequences, Kleene pattern queries are more expensive yet more
flexible, capturing matches of arbitrary length. These arbitrarily
long matches, also known as event trends, can be aggregated to
derive meaningful insights, driving increased profit, customer sat-
isfaction, and safety [11]. To achieve near real-time responsiveness
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for these expensive Kleene pattern workloads, it is imperative to
exploit both sharing optimization and online execution strategies.

State-of-the-Art Approaches. CEP has become an increas-
ingly important area of research [1, 4, 6, 7, 12, 14–16]. A variety of
solutions have been introduced to address the three dimensions of
the multi-query event trend aggregation problem, namely, multi-
query sharing, online aggregation, and Kleene closure processing.

State-of-the-art CEP systems that support Kleene closure while
utilizing shared processing implement a two-step approach to tackle
trend aggregation [3, 5]. That is, they first construct all event trends
matching the query patterns (an extremely expensive process espe-
cially for Kleene patterns), and only thereafter aggregate them. In
this case, sharing optimization is only applied to the first step of
trend matching and construction. Consequently, sharing optimiza-
tion on trend construction does not guarantee real-time responsive-
ness since the complexity of trend construction itself is exponential
in the number of matched events in the worst case [15].

Recent work on event trend processing [8–10] addresses this
performance bottleneck by pushing the aggregation computation
into the pattern matching process. Such online methods succeed to
skip the event trend construction step, reducing the time complexity
from exponential to polynomial in the worst case [8, 9]. Among
these online approaches, only Sharon [10] enables sharing among
multiple queries. However, its shared execution strategy is rigid,
resulting in missed beneficial sharing opportunities. It also lacks
support for Kleene closure.

Challenges. Designing a unified solution that covers all three
dimensions of trend aggregation faces unique challenges.

Sharing diverse nested Kleene patterns. Kleene patterns in a work-
load can be nested and quite diverse. For example, the following two
queries contain the same event types in the same order, yet it is not
clear what, if anything, can be shared: SEQ (𝐴+, 𝐵, SEQ(𝐶, 𝐷)+) and
SEQ (SEQ(𝐴, 𝐵)+,𝐶 ,𝐷)+. In spite of Kleene patterns being among
the most expensive CEP operations, effectively sharing the execu-
tion of such patterns has not previously been tackled.

Shared computations without trend construction. Traditional shar-
ing strategies are incompatible with the online computation of
event trend aggregation. Namely, each shared sub-pattern is ag-
gregated separately, and then must be stitched together to form
final matches. However, the validation for such stitching across
partial results of Kleene sub-patterns requires keeping the actual
sub-trends – which is in direct conflict to online aggregation that
avoids trend construction [10, 11], with the latter our target here.

https://doi.org/10.1145/3340531.3412138
https://doi.org/10.1145/3340531.3412138


Optimizing the Kleene sharing plan. The prevailing assumption
that more shared sub-patterns result in larger performance im-
provement does not always hold in the context of online trend
aggregation due to the sharing overhead incurred for the correct
stitching of partial aggregation results. Given the exponential com-
plexity of the sharing plan search space, we thus need effective
optimization algorithms that are supported by a cost-benefit model
to select an efficient execution plan.

Contributions. We design a unique multi-query shared event
trend aggregation (Muse) approach to tackle the challenges above.

1. The Muse optimizer represents a nested Kleene pattern work-
load as a compact data structure called the global plan. It refines the
global plan to select only beneficial sharing candidates in quadratic
time by leveraging our cost-based benefit model.

2.We design theMuse executor to avoid event trend construction
by saving materialized states that contain intermediate aggregation
results per query prior to executing shared sub-pattern aggregation.

3. Our preliminary experiments on real and synthetic event
streams demonstrate that Muse achieves 4 orders of magnitude
performance improvement over state-of-the-art approaches.

2 PRELIMINARIES

An event is a data tuple describing an incident of interest. The event
type 𝐸 of 𝑒 specifies the set of event attributes associated with 𝑒 .
A specific attribute of 𝑒 is referred to as 𝑒.attr . An event stream
I is a sequence of events that arrive in order of their occurrence
time. An event consumer continuously monitors the stream with
event queries. We adopt the commonly used query language and
semantics from SASE [1, 14, 15].

Definition 2.1 (Kleene Pattern). A pattern 𝑝 is an event type 𝐸, a
Kleene plus operator 𝑝𝑖+, or an event sequence operator SEQ (𝑝𝑖 , 𝑝 𝑗 )
applied to patterns 𝑝𝑖 and 𝑝 𝑗 . Patterns 𝑝𝑖 and 𝑝 𝑗 are called sub-
patterns of 𝑝 . A Kleene pattern is a pattern with at least one Kleene
operator. If a Kleene operator in 𝑝 is applied to an expression that
contains another Kleene operator, the pattern 𝑝 is nested.

Definition 2.2 (Event Trend Aggregation Query). An event
trend aggregation query 𝑞 consists of five clauses:

• Aggregation result specification (RETURN clause),
• Kleene pattern 𝑝 (PATTERN clause),
• Predicates 𝜃 (optionalWHERE clause),
• Grouping 𝐺 (optional GROUPBY clause), and
• Window𝑤 (WITHIN/SLIDE clause).
An event trend 𝑡𝑟 = (𝑒1, . . . , 𝑒𝑘 ) is a sequence of events that

matches the structure specified by a pattern 𝑝 . All events in the
trend 𝑡𝑟 satisfy predicates 𝜃 , have the same values of grouping
attributes 𝐺 , and are within one window𝑤 .

Problem Statement. Given a workload of event trend aggrega-
tion queries 𝑄 and a high-velocity event stream 𝐼 , the Multi-query
Event Trend Aggregation Problem is to minimize the execution time
needed to evaluate 𝑄 over stream 𝐼 .

3 MULTI-QUERY TREND AGGREGATION

Muse Sharing Plan. We represent each pattern as a Finite State
Automaton (FSA) [1, 8, 14, 15], where each node is an event type
and each edge indicates that events of these types are adjacent
in a match. To expose all sharing opportunities, FSAs for each

(a) Plan P1 (b) Plan P2

Figure 1: Plans for query patterns q1 = B+, q2 = SEQ(A,B+),
and q3 = SEQ(A,B+)+: (a) Plan P1 chooses no sharing; (b) Plan
P2 shares sub-pattern B+ for queries q1, q2, and q3.

(a) Non-shared execution (b) Shared execution

Figure 2: Intermediate aggregate count storage for stream I
= (a1, a2, b3, b4, b5) under: (a) non-shared execution of plan

P1; (b) execution sharing sub-pattern B+ for queries q1, q2,
and q3 as per plan P2 from Figure 1.

individual pattern are merged together into one integrated global
plan (Figure 1(a)). In the global plan, each event type, shown as a
rectangle, appears once. An event type shown as a double rectangle
is the end type in a pattern. Each edge is labeled by the set of queries
for which this edge holds. An edge that is labeled by 𝑘 queries
corresponds to a sub-pattern that appears in those 𝑘 queries. If
𝑘 > 1, we call such an edge shareable. An edge may also be marked
by a “+” symbol if it corresponds to a Kleene pattern.

The optimizer analyzes the sharing opportunities in the global
plan and produces the final Muse sharing plan to guide runtime
execution. In Figure 1(a), the label (𝑞1) (𝑞2) (𝑞3) on the Kleene edge
<𝐵, 𝐵> denotes that 𝑞1, 𝑞2, and 𝑞3 are processed separately (not
shared) in plan 𝑃1. In plan 𝑃2 in Figure 1(b), the label (𝑞1, 𝑞2, 𝑞3)
denotes that the computation of 𝐵+ for all three queries is shared.

Whenever queries are shared, the sharing plan must also attach
a MatPoint (materialization point). The MatPoint indicates the po-
sition in the plan where a shared sub-pattern begins. MatPoint
candidates can be of any event type in a shareable sub-pattern. In
Figure 1(b), the MatPoint for (𝑞1, 𝑞2, 𝑞3) is 𝐵 denoted by MP:𝐵.

Muse Executor. The goal of the Muse executor is to exploit
sharing to eliminate re-computations while still maintaining online
aggregation. This is achieved by introducing MatStates (Material-
ized States) for each MatPoint. A MatState stores a value for each
query, corresponding to each query’s intermediate trend aggregate.
This allows us to share computation among relevant queries.

Figure 2(a) depicts non-shared incremental count aggregates for
each query and each event following the non-shared plan 𝑃1 in
Figure 1(a). Additional structures for indexing are not shown for
compactness. In Figure 2(b), we share 𝐵+ given the Muse plan 𝑃2 in
Figure 1(b). Since the MatPoint is event type 𝐵, a MatState is created
when a 𝐵 event arrives following non-shared events. We can then
share incremental aggregation of 𝐵 events and later lazily recover
the actual counts by referring to the MatState. For example, the



actual counts in event 𝑏5 are computed by multiplying the shared
count in 𝑏5 by the value in its corresponding MatState. The actual
count in 𝑏5 for query 𝑞3 is 4 × 2 = 8. In this simple example, we
only show one MatState, but in general, there is a one-to-many
correspondence between each MatPoint and its MatStates.

Muse Benefit Model. Maintaining MatStates for shared exe-
cution causes computational overhead. Thus, we exclude sharing
opportunities that are not beneficial as determined by the Muse
optimizer. At compile time, the optimizer computes the benefit of
sharing based on stream statistics and produces the final Muse shar-
ing plan to guide the executor. We quantify the trade-off between
sharing and not sharing in our Muse benefit model.

Definition 3.1 (Benefit). The benefit of sharing edge <𝐸 ′, 𝐸> for
queries 𝑄 is computed as the difference between the cost of the
non-shared and shared execution plans. Let |𝐸 | (|𝐸 ′ |) denote the
number of events of type 𝐸 (𝐸 ′) per query window. The major cost
factors of benefit are |𝐸 |, |𝐸 ′ |, the number of shareable queries |𝑄 |,
and the maximum number𝑚 of MatStates shared at the same time.

Benefit (<𝐸 ′, 𝐸>, 𝑄) = |𝑄 | × |𝐸 | × (log |𝐸 ′ | + |𝐸 ′ | + log |𝐸 |)
− |𝐸 | × (log( |𝐸 ′ |) +𝑚 × |𝐸 ′ | + log( |𝐸 |)) − |𝐸 | × |𝑄 | ×𝑚

If Benefit (<𝐸 ′, 𝐸>, 𝑄) > 0, it is beneficial to share <𝐸 ′, 𝐸> for 𝑄 .

Intuitively, if we maintain a fixed number of MatStates, the more
queries that share a sub-pattern, the more beneficial it becomes.

Lemma 3.2. Let 𝑝 be a shareable sub-pattern in a set of queries 𝑄
with a fixed number of MatStates. For any edge <𝐸 ′, 𝐸> in 𝑝 , as the
number of queries |𝑄 | increases, Benefit (<𝐸 ′, 𝐸>, 𝑄) increases.

Similarly, if the number of queries that share a sub-pattern re-
mains constant, the sharing plan that generates less MatStates to
be shared at the same time produces a higher benefit.

Lemma 3.3. Let 𝑝 be a shareable sub-pattern in a fixed set of
queries 𝑄 . For any edge <𝐸 ′, 𝐸> in 𝑝 , a smaller number of MatStates
𝑚 implies greater Benefit (<𝐸 ′, 𝐸>, 𝑄).

Due to space constraints, proofs for Lemmas 3.2 and 3.3 and
details for Definition 3.1 are in our technical report [13].

Search Space of Alternative Muse Plans. A MUSE sharing
plan dictates which subsets of queries are shared for each of the
subexpressions in the MUSE plan and where within the MUSE plan
to place which MatPoint for each shared expression. The search
space thus consists of all possible MUSE sharing plans, i.e., all
combinations of (1) query subsets for each of the MUSE plan edges
and (2) MatPoint candidates (sharable event types).

(1) Query subset. The queries on each edge of the plan are parti-
tioned into non-overlapping subsets. A subset of size 1 indicates
that the query is not shared. For example, in Figure 3(a), the label
(𝑞1) (𝑞2, 𝑞3) on edge <𝐵, 𝐵> denotes that queries 𝑞2 and 𝑞3 are
shared, but 𝑞1 is not shared. The number of possible partitions
increases exponentially in the number of queries.

(2) MatPoint. In addition, each shared query subset also selects a
MatPoint. For example, in Figures 3(a) and 3(b), the optimizer can
select either event type 𝐴 or event type 𝐵 as the MatPoint for the
Kleene edge <𝐵, 𝐵> for the shareable sub-pattern SEQ(𝐴, 𝐵+) for
queries 𝑞2 and 𝑞3. The pool of MatPoint candidates for each query
subset on each edge is linear in the number of event types.

Muse Optimizer. Next, we tackle the challenge of finding an
optimized sharing plan that balances the trade-off between its ben-
efit and overhead. Aggressively sharing all possible shareable sub-
patterns is not likely to achieve this. Hence, our optimizer instead
takes as input the global plan, then refines and annotates it with
sharing decisions to produce the final beneficial sharing plan.

Fortunately, many plans in the search space can be pruned by
Lemmas 3.2 and 3.3. For example, we prune the plan in Figure 3(b)
since by Lemma 3.2, benefit will increase by adding 𝑞1 to the shared
query set given that sharing 𝑞1 does not introduce new MatStates.
Rather, we thus ought to consider the plan in Figure 3(c) instead.

To leverage our pruning principles, we process decisions sequen-
tially from the start to the end of each shareable sub-pattern. Thus,
the Muse optimizer traverses the global plan in a modified topo-
logical sort order. When we process a node, we select the most
beneficial arrangement for each of its outgoing edges.

Note that Kleene closure introduces cycles to the global plan, but
the topological sorting algorithm assumes a DAG. Fortunately, the
query input has already identified which edges cause cycles, i.e., the
Kleene+ edges, and they have been marked in the global plan. To
modify the algorithm, we restrict the topological sorting algorithm
to exclusively use the SEQ edges. Further, to then ensure a beneficial
plan, we may have to revoke previously made sharing decisions
and re-analyze event types for certain Kleene sub-patterns. Our
optimizer algorithm stipulates that if an event type 𝐸 is nested in
𝑡 cycles in the global plan, then 𝐸 is analyzed at most 𝑡 + 1 times.
The number of edges in the global plan is an upper bound for 𝑡 .

4 PRELIMINARY EVALUATION

We implementedMuse in Java with JRE 1.7.0_80 running on Ubuntu
16.04.6 with 503GB of RAM. We evaluate our Muse approach using
the following data sets. The NASDAQ Stock Market Real Data Set
[2] contains transaction records of more than 3200 companies for
one month. The Ridesharing Data Set was generated by our stream
simulator to control the rate of event types in a stream that models
transactions between riders and drivers in 20 districts.

For each data set, we generate four Kleene pattern workloads.
We vary three cost factors based on our benefit model: the num-
ber of events per window, the number of queries, and the ratio of
MatStates to the number of events per window. Unless stated other-
wise, each query workload consists of 100 queries. We execute each
experiment on each workload three times and report the average.

We compare to three state-of-the-art approaches introduced in
Section 1: MCEP [5], Sharon [10], and GRETA [8]. We use through-
put as the metric to evaluate the efficiency of the Muse approach.
Throughput is the number of events processed by all queries per
second and is commonly reported for streaming systems [5, 7, 9, 14].

Varying the Number of Events. In Figure 4(a), we vary the
number of events per window for all four approaches.

Sharon [10] does not support Kleene closure. It evaluates a set
of flattened event sequence queries to detect all trends matched
by one Kleene query. Therefore, Muse has a throughput gain of 3
orders of magnitude over Sharon at 15k events per window. Sharon
does not terminate for more than 15k events per window.

MCEP [5] is a two-step approach that utilizes sharing and re-
ordering optimizations for the trend construction step. It achieves
2 orders of magnitude speed-up compared to Sharon. However, its



(a) (b) (c)

Figure 3: More plan candidates for query patterns q1 = B+, q2 = SEQ(A,B+), and q3 = SEQ(A,B+)+: (a) plan shares SEQ(A,B+) for
q2 and q3 with MatPoint at A; (b) plan changes MatPoint to B for sub-pattern B+; (c) plan shares all three queries for B+

(a) Ridesharing data (b) Stock data

(c) Stock data (d) Ridesharing data

Figure 4: Throughput varying (a-b) number of events per

window, (c) number of queries, and (d) MatState ratio

throughput decreases exponentially in the number of events. Thus,
MCEP does not terminate for several hours if the number of events
per window exceeds 25k. GRETA [8] is an online approach that
lacks sharing optimizations. At 25k events per window, GRETA out-
performs MCEP by 3 orders of magnitude, while Muse outperforms
MCEP by 4 orders of magnitude (Figure 4(a)).

We evaluate performance on a higher rate event streamwith over
105 events per window in Figure 4(b). Measurements for Sharon
and MCEP are not shown because these approaches fail to return
results for several hours. While Muse processes each event once
for all queries, GRETA repeats computations for each query. Thus,
Muse achieves 14-fold increase in throughput over GRETA.

Varying the Number of Queries. In Figure 4(c), we observe
that the more queries are shared, the higher the benefit compared to
the non-shared online approach. This confirms Lemma 3.2. Specifi-
cally, Muse achieves from 7-fold to 25-fold throughput gain over
GRETA when the number of queries increases from 50 to 300 for
200K events per window (epw) for the stock data set.

Varying MatState Ratio. We observe increased sharing benefit
with less number ofMatStates, confirming Lemma 3.3. In Figure 4(d),
we report throughput with varying ratios of the number of Mat-
States to the number of matched events. For streams with very
few MatStates, Muse achieves nearly 7-fold increase in through-
put compared to the non-shared system, GRETA. Throughput gain
decreases as more MatStates must be maintained. Eventually, it

becomes no longer beneficial to share when the number of Mat-
States grows too large. Under these conditions, the Muse optimizer
decides not to share, and Muse performs similarly to GRETA.

5 CONCLUSIONS

Our Muse approach tackles shared aggregation of event trends
matched by diverse nested Kleene pattern queries over high speed
streaming data. The Muse optimizer exposes all sharing oppor-
tunities in the global plan and selects the beneficial ones based
on the Muse benefit model. The Muse executor minimizes query
re-computation and trend construction overhead by deploying our
lightweight MatState sharing technique. Our preliminary evalu-
ation shows that the Muse achieves several orders of magnitude
performance improvement over state-of-the-art solutions on both
real and synthetic data sets.
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