SPASS: Scalable Event Stream Processing
Leveraging Sharing Opportunities

Medhabi Ray (Microsoft), Chuan Lei (NEC Labs America),
Elke A. Rundensteiner (Worcester Polytechnic Institute)

NSF grants
11IS-1018443 & 0917017

© SPASS Architecture

Event
Processing

Event
Producer

Event
Consumer

Multiple Pattern Queries

CarLoc c2 (c2.pos = exitA & c.id = c2.id))

Accident a (a.pos = tollA + 5 miles),
Carloc c1 (cl.pos = exitA & c.id = cl.id))

Q3: SEQ (Carloc c (c.pos = tollA),
CarLoc c1 (cl.pos = c.pos &
cl.type = EMS & cl.state = Parked),

Q1: SEQ (Carloc c (c.pos = tollA),
Carloc c1 (c1.pos = WorkZone, cl.id = c.id)
‘ CarLoc c2 (c2.pos = exitA & c.id = c2.id)

CarLoc c1 (cl.pos = WorkZone, cl.id = c.id)
Carloc c2 (c2.pos = exitB & c.id = c2.id))

Q2: SEQ (Carloc ¢ (c.pos = tollA), }
)J

[04; SEQ (Carloc ¢ (c.pos = tollA),

Multiple Pattern Queries with Common Sub-Patterns

© SPASS Optimizer

» Challenge 1. Non-Alignment of Cardinality of Pattern Matches

P,—
P,—

Number of AB

t
HLCM(T,, T,)

Observations

* The cardinality of the sub-pattern matches varies over time

« The crests and troughs often may not align well

Intra-Query Event Correlation

» Number of event instances of type E; follow an event of type E;

« Estimate the number of sub-pattern matches formed in a time interval

Inter-Query Event Correlation

« Aratio between
v The number of sub-pattern matches computed with sharing
v The number of sub-pattern matches computed independently

« Estimate the degree of sharing possible across multiple patterns

Redundancy Score

» Estimate the degree of the redundant computation of sub-pattern
matches within a time interval using both Intra- and Inter-Query Event
Correlations.

Challenge 2. Intractable Search Space

* Find a subset of sub-patterns such that all pattern queries can be
answered with minimal redundancy ratio

Solution

* Map to Minimum Substring Cover problem

« Leverage a polynomial-time approximate solution with proven acceptable
bounds on optimality to identify the subset of sub-patterns

» Build shared pattern plan based on the identified sub-patterns

[seamnBco 1P} | | sEQaBX Py |

SEQ(A,B,C) | {P, P}

—> Output: Pattern Matches —>

SPASS Runtime

Shared Continuous
Sliding Views

Pattern Transaction
Executor Manager

Collector Manager

Output: Shared

Pattern Plan

i
i
i
i
i
i
:
.
Statistics View Statistics
i
i

SPASS System
Architecture

SPASS Optimizer

E RR Sub-Pattern
'|_Estimator Selector

Shared Pattern Plan
Generator

—> Input: Event Stream —>

Input: Pattern Workload

+ SPASS Optimizer builds an optimal sharing plan for entire pattern workload
+ SPASS Runtime exploits iterative hierarchical processing to compute

pattern matches

© SPASS Runtime

Shared Views

1

Pattern Pattern
Thread 1 Thread 2

Pattern Purge
Thread n Thread

Shared Event
Buffers E

f

| Input Thread

« Key challenge - maintain result matches for sub-patterns

« Solution

« Shared continuous sliding views store intermediate results of sub-patterns
« Partial sub-pattern matches stored in sequence views
« Subsequent reuse by accessing these materialized views associated with

sub-patterns

« Concurrent reuse of shared continuous sliding views
* View Validity Interval (VVI) — timestamp-based indicators associated with

materialized views

» View Lookup Interval (VLI) — a time interval to look up pattern matches

© Experimental Results

Unshared

Shared

Average Execution Time (s)

o =
B
Number of Queries

[N

51 mspass

Prefix
B Suffix
Random

Average Execution TIme (ms)

)

W2
Workloads

Window size and number of patterns
increase, SPASS achieves more
performance gains.

On average, SPASS exhibits 17 times
faster average execution time
compared to the unshared approach.

« W1 is characterized by 4 sets of 5
patterns sharing common prefixes
across the queries

« W2 consists of 4 sets of 5 patterns with
common suffixes.

* W3 has queries with mixed common
sub-patterns.

© Conclusion

SPASS Optimizer leverages event correlations to find an effective sharing plan.
SPASS Runtime then execute this shared pattern plan by exploiting the shared
continuous sliding view technology.

SPASS achieves many folds performance improvement in CPU utilization
compared to state-of-the-art techniques.

| seqaB) P |[sEQEC) 1P} [sEQD) P | [sEQ) 1 P3|

Shared Pattern Plan

M. Ray, C. Lei, and E. A. Rundensteiner: SPASS: Scalable Event Stream Processing Leveraging Sharing Opportunities. Poster, DEBS 2016: 336-339
M. Ray, C. Lei, and E. A. Rundensteiner: Scalable Pattern Sharing over Event Streams. SIGMOD 2016: 495-510

