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ABSTRACT
In this work, we use semantic knowledge sources, such as cross-

domain knowledge graphs (KGs) and domain-specific ontologies, to

enrich structured data for various AI applications. By enriching our

understanding of the underlying data with semantics brought in

from external ontologies and KGs, we can better interpret the data

as well as the queries to answer more questions, provide more com-

plete answers, and deal with entity disambiguation. To semantically

enrich the data with external knowledge sources, we need to find

the correspondences between the structured data and the entities

in the cross-domain KGs and/or the domain-specific ontologies. In

this paper, we break this problem into several steps, and provide

detailed solutions for each step. We showcase the practical value of

semantic enrichment of data using our proposed techniques in en-

tity disambiguation, natural language querying and conversational

interfaces to data, query relaxation, as well as query answering,

with promising results.
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1 INTRODUCTION
Knowledge graphs (KGs), both hand-curated, as well as created

from unstructured, semi-structured, and structured data sources,

store information about the world in structured form and constitute

the foundation of most modern AI systems. There are many cross-

domain large-scale KGs such as DBpedia [8], Wikidata [47] and

YAGO 4 [44], which provide well-structured, encyclopedic knowl-

edge about a wide spectrum of entities, targeting coverage, but

without much detail. Domain-specific ontologies, such as FIBO [2],

FRO [3], SNOMED CT [6], and RxNorm [4], address this issue by

providing more fine-grained information about entities, complex

entity relationships and deep hierarchical relationships between

them.
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Encapsulating the rich semantic knowledge from domain-specific

ontologies into a structured dataset, provides a better understand-

ing the underlying data, and consequently, the ability to reason

at a more abstract level. This deeper data understanding enables

many AI applications, including natural language interfaces, en-

tity disambiguation, entity resolution, query relaxation, as well as

ontology-based query answering. Ontology-based natural language

interfaces (e.g., [40, 42]), for example, augment linguistic patterns

with domain knowledge and allow reasoning at the level of real-

world entities, as opposed to tables and columns, for interpreting

the user’s utterance and converting it into a structured query. Use

of external knowledge sources, such as ontologies, enable relaxing

user queries[34] with synonymous terms, and expand the querying

capabilities of the underlying systems. Ontology-based data access

systems [52] capture the domain semantics and provide a standard

description of the domain for applications to use. Ontologies and

KGs are also used in entity resolution [37] and entity disambigua-

tion [48] to find the correspondences between real-world entities.

In summary, semantic enrichment of data enables deep reasoning

capabilities that are needed in many applications.

In this work, we use both cross-domain KGs as well as domain-

specific ontologies to enrich structured data for many AI applica-

tions. The main challenge in all these AI applications is to find the

correspondences between the structured data and the entities in the

cross-domain KG and/or the domain-specific ontologies. Figure 1

identifies the many problems that needs to be solved to augment

structured data with KGs and ontologies for downstream AI appli-

cations.

Figure 1: Semantic data enrichment for AI applications.

In most cases, a user starts with a structured data source, does

not know the domain, and hence first needs to identify the enti-

ties in the data set. We call this the entity type detection problem.
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Cross-domain KGs that contain high-level information about world

entities is a rich source of information to leverage for this problem.

Note that at this point the information about entities are still at

high-level. We also observed that the accuracy of matching data to

generic entities is limited without human intervention and is not

as specific, matching higher level concepts in a is-a hierarchy.

Once we detect the entity types, we can identify the domain of

the data set and use domain-specific ontologies to target specific

concepts with rich domain information. In some cases, a user may

already know the domain, and can skip entity type detection. We

solve the problem of matching data to ontologies in two steps. In the

first step, we first create an ontology [25, 35] from the data set, and

then use ontology to ontologymatching [24]. Inmany cases, a single

ontology is not sufficient to cover all the data items, but require

multiple ontologies. For example, only 15 entities in the MIMIC-

III [29] dataset has matches in SNOMED CT. To match all entities,

we need to use multiple domain-specific ontologies. An important

observation is that the matches only cover a small subset of the

domain-specific ontology. Using many large ontologies slows than

the AI applications. Hence, it is important to identify and extract

only the subset that matches. This problem is know as module

extraction [11, 46] in the literature. The final step is the merging

of these many subsets extracted from multiple ontologies to create

the final enriched ontology that will power many AI applications.

In the rest of the paper, we briefly define each problem and

provide our initial results for each, including entity type detection,

ontology creation, ontology matching, and modular ontology reuse

(Sections 2 and 3). We also describe four AI applications: query

answering (Section 4.1.1), query relaxation (Section 4.1.2), NLQ

(Section 4.2), and entity disambiguation (Section 4.3).

2 DATA TO ONTOLOGY MATCHING
In this section, we describe the problems and our solutions to enrich

a given data set with external semantic knowledge sources, such

as KGs and ontologies, by finding the correspondence between

the data and ontologies. As shown in Figure 1, this involves vari-

ous steps, including entity type detection, ontology creation, and

ontology to ontology matching.

2.1 Entity Type Detection
There are many use cases where the domain of the source data is

not known. In those cases, we first need to identify entity types,

and the domain of the data set. In this section, we assume that

we are given a data set stored in an RDBMS, with its metadata

(tables, columns and a set of primary key-foreign key (PK-FK) con-

straints), and the goal is to map tables and columns to entity types.

We exploit external knowledge sources such as Wikidata [47] and

Schema.org [5] to identify high-level or generic entities such as

Person, Organization, Product, Location, etc. that are domain ag-

nostic. Wikidata is an open cross-domain knowledge graph which

provides a central repository of structured data in terms of items,

properties and values. Schema.org is an open type hierarchy initi-

ated by Google, Microsoft and others, that describes schemas for

structured data in terms of several different object/classes such as

organization, person, place, product etc.

We propose a two-step approach for entity type detection (Fig-

ure 2), using the two external knowledge sources described above.

In step 1, we map a column in a table to column-level entities in

the target knowledge source. In step 2, we map each table in the

relational schema to a table-level entity in the target knowledge

source.

Figure 2: Entity Type Detection in two steps

Step 1: Column-level entity mapping. Column-level entity

mapping is done using both instance data as well as the metadata as-

sociated with the relational schema of the source data set. First, we

use instance level matching using a search index created fromWiki-

data [28]. For each column in a table, we match its data instances

to the Wikidata search index using various similarity metrics, in-

cluding lexical similarity metrics such as exact match, Levenshtein,

BM25 and word embeddings using pre-trained language models

such as BERT. We, then, aggregate the instance-level matches for

each column to detect candidate column types. In addition to this,

we also use regular expressions to detect certain column types such

as date, email, etc. where the instance data is not available in the

Wikidata index.

We also do meta-data level matching using the Schema.org type

hierarchy to improve the accuracy. For each column in a table,

we match the column name to the schema.org type hierarchy and

detect candidate entity types using different similarity metrics,

including Levenshtein and Q-gram as well as word embeddings.

To combine the results of both instance level and meta-data level

matching, we first consider the top matches using the instance

level matching using Wikidata. For the columns where the instance

level matching produces very low confidence or no results, we uti-

lize the results obtained from the meta-data level matching using

Schema.org. Combining the results of instance-level and metadata

level matches, we pick the top-k
1
matches based on their similarity

scores as the candidates for column-level entities. Using both in-

stance data and meta-data level matching provides a robust method

for detecting entity types.

Step 2: Table-level entity detection. The key idea here is that
using the top-k column-level matches obtained, we identify the

table level entities based on a voting algorithm. More specifically,

for each column in a source table, we first list the top k column-

level candidate entities identified in Step 1, and using each column-

level entity match we map the table to a table-level entity in the

1
We use k=5 in our initial results



schema.org type hierarchy. For each distinct source table, we count

the number of times a destination table-level entity is identified

for all column-level entities in the source table, and pick the entity

type with the maximum count as the table-level entity match. In

case of a tie, we use similarity metric rankings to break the tie.

Evaluation. We evaluated our entity detection algorithms on

two different data sets. The first data set contains sales data corre-
sponding to sales of different products made by employees across

different departments. The sales data is stored in a relational data-

base with a total of 28 tables and 392 columns. We limited the scope

of the evaluation to a subset of 14 columns across 6 different tables

of this data set that were relevant to 5 generic entities: Person,

Company, Product, Place and Order. Note that these are all generic

entities that are domain agnostic. The second data set is a film data

set containing information about actors, films, categories and rental

histories. The data set consists of 15 tables and 240 columns. Again

for this data set we limited the evaluation to a subset of 14 columns

across 6 tables that were relevant to the 5 generic entities listed

above.

Table 1: Entity type detection results (F1-scores)

Sales Dataset Films Dataset
Step 1 0.71 0.79

Step 2 1.0 1.0

Table 1 shows the results in terms of F1-scores for our two step

approach for entity type detection for k=5. For Step 1, column-

level entity detection we achieved F1-scores of 0.71 and 0.79 for

the sales and films data sets, respectively. For Step 2, we evaluated

the detection of 6 tables containing the selected columns for the

two data sets. We were able to detect all the 6 table-level entities

correctly for both the data sets achieving an F1-score of 1. We

observe that even though we achieve a comparatively lower F1-

score for column-level entities, the step-2 for table level entity

detection using the voting based algorithm is quite robust and is

able to identify all the table-level entities correctly.

2.2 Ontology Creation and Enrichment
There are many use cases where we know the domain of the data

set. We can use this information to match the data to more detailed

domain-specific entities. There is a lot of work in the literature

for ontology to ontology matching [17, 26]. To take advantage of

these works, we first create an ontology from the data set, followed

by ontology to ontology matching. In the following sections, we

describe both of these steps. We support creating ontologies from

both relational data, as well as semi-structured data in JSON format.

We also introduce an ontology enrichment technique to incorporate

more semantic information before ontology matching.

2.2.1 Ontology generation from relational data. In earlier work,

we built FINESSE [25, 35] to create an ontology from a relational

schema describing the underlying data set. FINESSE uses a multi-

step approach [35] for inferring entities, their data properties and

relationships between these entities. These steps include: (1) Iden-

tifying entities. We map each table in the underlying relational

schema to an entity in the inferred ontology
2
with the exception

of a few tables that exist in the relational schema to enable m:n

joins. More details on this can be found in [35]. (2) Identifying data

properties. Each column in a table is mapped to a data property

of the corresponding entity that represents the table. Exceptions

include the foreign key columns. (3) Identifying relationships be-

tween entities. We use the primary key foreign key relationships

in the underlying relational schema for inferring relationships be-

tween entities, their types and cardinalities. Further, in many cases

the primary key foreign key constraints are not explicitly specified

in the relational schema. Inferring semantically richer relationships

such as parent-child (is-A) relationships between tables is also chal-

lenging. We have developed techniques to infer such relationships

from the characteristics of underlying data distributions. Further

details can be found in [35].

2.2.2 Ontology generation from JSON data. Semi-structured data

is often represented in JSON format stored in document stores. We

designed a multi-step process [35] to infer an ontology from the

JSON documents. In the first step, we build a schema tree from the

nested structure of the JSON data for each individual document.

The individual schema trees extracted from different documents are

merged into a single schema, similar to the data guide generation

process of Goldman et al. [19]. In the second step, we use the

following rules to convert the schema into an ontology.

Path A.b => Entity A, Property b of A

Path A.B.c => Entity A, Entity B,
Relation A to B, Property c of B

2.2.3 Ontology enrichment. The methods described in Sections

2.2.1 and 2.2.2 create ontologies that capture schema-level details

of the underlying data, but they are far less semantically rich than

the standard ontologies created by experts. To alleviate this issue,

we introduce entity and neighborhood augmentation heuristics to

enrich the derived ontology in [24].

For each distinct value in the source data, the entity augmenta-

tion heuristic adds an instance-level entity to the created ontology,

and connect these new entities to the existing schema-level ones via

a new relationship “instance of”. The neighborhood augmentation

heuristic adds the missing structural information to the created

ontology. If two entities in the standard ontology have an edge,

while their counterparts in the created ontology do not, a new edge

is added to the created ontology. The enriched ontology contains

rich semantic information from the instance data in the database,

which can be matched to a standard ontology with higher precision.

2.3 Ontology to Ontology Matching
As described above, data to ontology matching is the process of

finding semantic correspondences between tables in databases to

standard ontologies. Once an ontology is derived and enriched

from the source data, we can further map it to a standard domain-

specific ontology. Ontology to ontology matching is an active area

of research, with the Ontology Alignment Evaluation Initiative
3

organized each year. LogMap [26] and AML [17] employ various

2
An entity corresponds to a class in an ontology. In this paper, we use the terms

concepts and entities interchangeably

3
http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/2020/

http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/2020/


sophisticated features and domain-specific thesauruses to perform

ontology matching. However, these hand-crafted features often are

limited for a given data source and face the bottleneck of improve-

ment. To address these shortcomings, in [24], we introduce MEDTO

(Figure 3) to address ontology to ontology matching problem with

two innovative techniques.
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Figure 3: MEDTO system architecture (best viewed in color).

First, we employ hyperbolic graph convolution layers to encode

the parent and child entities of each entity in the hyperbolic space,

capturing the hierarchical characteristics in an ontology. Represent-

ing such hierarchical structures in the hyperbolic space would help

identify matching entities and improve the accuracy of ontology

matching. Second, we introduce heterogeneous graph layers to in-

corporate both the local structure and the global context into entity

embeddings to enrich the features of each entity. The global context

indicates the position of the entity within the broader context of the

entire ontology, providing the high degree of separation between

entities.

MEDTO leverages these two complementary representations

(i.e., hierarchical and non-hierarchical views) to improve the ontol-

ogy matching capabilities. As shown in [24], MEDTO significantly

outperforms the state-of-the-art (e.g., LogMap [26] and AML [17])

methods on matching MIMIC-III to a standard medical ontology

(i.e., SNOMED CT). Among 15 matching entitiess identified by

domain experts, MEDTO was able to match 7 and 9 tables from

MIMIC-III to SNOMED CT when Hits@10 and Hits@30, respec-

tively. Furthermore, MEDTO consistently achieves results on par or

even better than a variety of baselines (e.g., LogMap [26], AML [17],

RDGCN [51], etc.) on a benchmark (i.e., Large BioMed Track) from

the Ontology Alignment Evaluation Initiative.

3 MODULAR ONTOLOGY REUSE
Once we have matched our input data to entities defined in an

external ontology, the next steps are to extract a small subset of

the external ontology that is relevant to the matched entities (this

subset is called a module) and then construct a unified, semantically

enriched ontology for our data. In this section, we briefly describe

those steps for the case in which a single external ontology is

employed. This process, however, could be extended to incorporate

multiple such external ontologies, which we plan to investigate in

future work.

Module extraction. The external ontology 𝑂2 typically con-

tains a huge amount of information, most of which is not relevant

to our constructed ontology 𝑂1. For example, SNOMED CT con-

tains hundreds of thousands of entities, and in the previous section,

we presented a use-case in which only 15 of those entities were

actually matched to MIMIC-III. Our goal with module extraction is

to retain only the smallest possible subset of 𝑂2 that is relevant to

𝑂1, without losing its semantics. This is known in the literature as

extracting a minimal module in 𝑂2 [21]. Intuitively, for our down-

stream tasks, it makes no difference in the quality of the results

if we use the whole 𝑂2 or its minimal module 𝑂 ′
2
, but it makes a

huge difference in efficiency. Therefore, this step is optional and

it mainly targets performance improvements, as well as a more

manageable visualization of the data semantics, if needed.

Ontology unification. In the unification step, we merge our

constructed ontology 𝑂1 with the module 𝑂 ′
2
of the external ontol-

ogy 𝑂2. In our current implementation, the merge operation is a

simple renaming of the terms in𝑂1 with the matching terms in𝑂 ′
2
,

which are typically standardized terms. We can also have entities

in 𝑂1, which are not matched to entities in 𝑂2. For those entities,

we retain their names as originally defined in𝑂1. In addition to the

methodology described above, many other merge operations are

also possible. For a comprehensive list, please refer to [15].

4 APPLICATIONS
In this section, we describe several AI applications that benefit from

the semantic enrichment introduced in Sections 2 and 3.

4.1 Ontology-Enhanced Query Answering
With query answering, we refer to the problem of providing answers

to user queries in a structured format (e.g., SQL, SPARQL), in (one-

shot) natural language text, or in a conversational space. In all those

settings, what is common is that by enriching our understanding

of the underlying data with semantics brought in from external

ontologies, we can better understand the queries, and also provide

more complete answers, compared to just using the input data.

4.1.1 Ontology-enriched query answering on relational data. In [7],

we show how we can enrich query answers on a relational database

by exploiting an external ontology (e.g., SNOMED in the medi-

cal domain). First, we enrich the data-generated ontology with a

module of the external ontology, as described in Section 2.2. Then,

using the enriched ontology as a target schema, we follow the chase

procedure from data exchange [16] to transform the input data into

this schema. This allows the users to pose queries using the vo-

cabulary of the external ontology, as well as that of the input data.

Our experimental evaluation on 15 exemplar queries taken from

the logs of a real conversational system, showed that the ontology-

enriched framework provided more answers than just relying the

knowledge coming the the underlying database in all 15 queries [7].

It could even provide answers to queries that could not have been

understood without ontology enrichment, or queries for which we

originally got 0 answers without ontology enrichment.

4.1.2 Query relaxation. In addition to providing enriched answers

using an external ontology, we show how we can leverage an ex-

ternal ontology to alleviate the mismatch between the KB and the

colloquial and imprecise terminology used in queries. In [34], we

introduce a domain-specific query relaxation approach that lever-

ages rich domain vocabularies and their semantic relationships

from an external ontology to expand both the set of queries that

we can answer, as well as the set of answers to the queries, over the

KB. We introduce a lightweight adaptation method to customize



and incorporate external ontologies to work with the existing KB,

and propose a novel similarity metric to leverage the information

content in the KB, the structural information in the external knowl-

edge source, and the contextual information from user queries. The

experimental results and user study in [34] show that the proposed

query relaxation method outperforms state-of-the-art methods,

including deep learning-based ones, in precision and recall and

improve the response quality of a query answering system.

4.2 Natural Language Querying and
Conversational Systems

The use of ontologies to build natural language interfaces to data

allows us reason about the underlying data in terms of real world

entities and their relationships. This enables a richer semantic un-

derstanding of natural language queries and enable better query

interpretation. This is in sharp contrast to working at the level of

physical relational schema elements such as tables and columns, as

real world entities tend to be spread across multiple such elements.

Reasoning at the level of such physical schema level elements makes

it much harder to interpret and respond to natural language queries.

4.2.1 Natural language querying. In [40, 42], we build ontology-

based natural language interfaces, using domain knowledge to

augment understanding of linguistic patterns and support natural

language querying of structured data.

ATHENA [40] utilizes the information in a given ontology that

represents the schema of the underlying data and an associated

mapping between the individual elements of the ontology and the

relational schema. A set of synonyms can be associated with each

ontology element. When translating an input query into a SQL

query, ATHENA uses an intermediate ontology query language

(OQL) expressed over the ontology before subsequently translating

it into SQL. Athena++ [42] extends ATHENA to support nested

query detection and generation, both of which use the ontology for

better accuracy. The extensive experiments show that ATHENA++

achieves 88.33% accuracy on the FIBEN benchmark [1] and 78.89%

accuracy on Spider benchmark [54], consistently outperforming

state-of-the-art systems.

In [23], we demonstrate the capability of our NLQ system to

support querying process automation data stored in JSON format

in Elasticsearch. We utilize process-specific artifacts and event logs

to derive an ontology for querying event logs. We also introduce a

novel translation algorithm to take a backend agnostic OQL query

represented in terms of ontology and translate it to an executable

DSL query over Elasticsearch.

4.2.2 Conversational systems. In addition to supporting one-shot

NLQ systems like ATHENA++, we further demonstrate the effec-

tiveness of using the semantically rich ontologies to build conver-

sational systems [38, 39]. We propose an ontology-driven approach

that leverages the domain-specific information captured in the on-

tology, to automatically bootstrap the conversational system in

terms of intents (the questions that the system can identify and

answer), entities (the system vocabulary) and the dialog to support

the desired interaction with the system in natural language.

In [38] we propose an ontology-based conversational system for

querying domain specific knowledge bases. In particular, we build

algorithms that map common usage patterns to the elements of the

domain ontology representing the underlying data, to identify user

intents as well as the key entities that are involved. We automate

the process of generating training samples to learn a model for

the conversation service to interpret and respond to user queries

against the knowledge base.

In [39] we extend the conversational system to support Business

Intelligence (BI) applications. The ontology in this case is created

from the OLAP cube definition (Business Model) against the under-

lying data stored in a relational database. The ontology provides an

entity-centric view of the OLAP cube definition in terms of Mea-

sures (quantifiable attributes), Dimensions (categorical attributes),

their hierarchies and relationships. We leverage the common ac-

cess patterns observed in BI workloads and map them onto the

semantically rich BI ontology to generate appropriate intents, their

training examples and structure the dialog to support common BI

operations.

4.3 Entity Disambiguation
Domain-specific ontologies, created and enriched from heteroge-

neous data sources, are expected to provide high-quality infor-

mation to facilitate decision making. Entity disambiguation (also

referred to as entity linking) leverages the wealth of such ontologies

to identify entities in a data source and finds their correspondences

in the ontology.

In [48], we introduce ED-GNN (Figure 4) based on three rep-

resentative GNNs (GraphSAGE, R-GCN, and MAGNN) for entity

disambiguation. The overall idea is to represent the entity mentions

in a text snippet as a graph to capture their interdependence, since

these entity mentions are likely to share similar or relevant context.

We then model entity disambiguation as a graph matching problem.

The proposed ED-GNN not only collectively learns the contextual

information and structural interdependence of entity mentions in

the given text snippets, but also captures discriminative contextual

information of entities in an ontology.

…
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Figure 4: ED-GNN architecture (best viewed in color).



In ED-GNN, we develop two optimizations to improve its disam-

biguation capability. First, after constructing a query graph (repre-

senting the entity mentions in a text snippet), ED-GNN augments

this graph with domain knowledge from the ontology. Second,

ED-GNN is equipped with an effective negative sampling strat-

egy, which challenges ED-GNN to learn from difficult samples to

improve the model’s disambiguation capability. The experimental

results in [48] show that ED-GNN with the above two optimization

techniques consistently outperforms the state-of-the-art entity dis-

ambiguation solutions in five real-world datasets by up to 16.4% in

F1 score.

5 RELATEDWORK
Ontology matching. Traditional feature-based approaches have

been investigated for ontology matching, including terminological-

based features, structural-based features and employing external

semantic thesauruses for discovering semantically similar entities.

LogMap [26] relies on lexical and structural indexes to enhance its

scalability. AML [17] also employs various sophisticated features

and domain-specific thesauruses to perform ontology matching.

Feature-based methods mainly employ crafting features to achieve

specific tasks. Unfortunately, these hand-crafted features will be

limited for a given task and face the bottleneck of improvement.

Representation learning has limited impacts on ontology match-

ing. DeepAlignment [31] is an unsupervised ontology matching

system, which refines pre-trained word embeddings with the de-

scriptions of entities, including synonymy and antonym extracted

from general lexical resources and information captured implicitly

in ontologies. Similar to DeepAlignment, a framework is introduced

for medical ontology alignment [32], based on terminological em-

beddings. The retrofitted word vectors are learned from the domain

knowledge encoded in ontologies and semantic lexicons.

Modular reuse of ontologies. Extracting a minimal module

from an ontology for a specific set of target classes and properties

from an ontologies comes from the theory of Description Logics,

the fragment of first-order logic underlying ontologies. Depending

on the expressivity of the target ontology, this problemmay even be

undecidable [21]. For that reason, efficient syntactic locality-based

approximations [21, 27] and module extraction methods based on

atomic decomposition [46] have emerged. In our query-answering

setting
4
, we have used the locality-based approach from an open-

source library
5
. For a comprehensive literature review of this area,

we refer the readers to [21, 46].

Graph neural networks. Graph representation learning has

been shown to be extremely effective, achieving promising results

in various domains over graph-structured data [22, 30, 36, 45, 53].

GCN [30] is a graph convolutional network via a localized first-

order approximation of spectral graph convolutions. The semi-

nal GNN framework, GraphSAGE [22], learns node embeddings

through aggregating from a node’s local neighborhood using induc-

tive learning. Graph attention networks (GAT) [45] are introduced

to learn the importance between nodes and their neighbors, and

fuse the neighbors to perform node classification.

4
https://github.com/IBM/ontology-enriched-query-answering

5
https://github.com/ernestojimenezruiz/locality-module-extractor

Heterogeneous graph embedding has also received much re-

search attention recently [10, 18, 41, 49], as many KBs also fall

under the general umbrella of heterogeneous graphs. For exam-

ple, R-GCN [41] distinguishes different neighbors with relation-

specific weight matrices. Heterogeneous graph attention network

(HAN) [49] leverages a graph attention network architecture to

aggregate information from the neighbors and then to combine

various metapaths through the attention mechanism. Inspired by

HAN, HetGNN [55] encodes the content of each node into a vector

and then adopts a node type-aware aggregation function to collect

information from the neighbors. MAGNN [18] captures all neigh-

bor nodes and the metapath context using both intra-metapath

aggregation and inter-metapath aggregation. Thus, the generated

node embeddings preserve the comprehensive semantics in the

heterogeneous graphs.

Entity disambiguation. For many years, entity disambigua-

tion (also referred to as entity linking) has been an active field of

research [43]. A related task, entity matching, has also been studied

extensively in the context of structured data [12, 13, 33]. Recently,

[20, 37] investigated various DL-based methods for entity match-

ing, and concluded that although DL-based techniques do not offer

significant advantages for structured data, they outperform cur-

rent solutions considerably for textual entity matching. NCEL [9]

applies graph convolutional network to integrate both local contex-

tual features and global coherence information for entity linking.

COM-AID [14] introduces a composite attentional encode-decode

neural network in healthcare. It encodes an entity into a vector and

decodes the vector into a text snippet with the help of textual and

structural contexts. NormCo [50] is designed for disease normal-

ization. It models entity mentions using a semantic model, which

consists of an entity phrase model using word embeddings and a

coherence model of other disease mentions using an RNN. The final

model combines both sub-models trained jointly.

6 CONCLUSION
In this paper, we describe semantic enrichment of structured data

using external semantic knowledge sources for various AI appli-

cations. We identify several sub-problems and provide a suite of

solutions to address these sub-problems, including entity type de-

tection, ontology creation, ontology matching, module extraction,

and ontology unification. We discuss how deep semantic under-

standing of data empowers four applications: natural interfaces to

data, ontology-based query answering, query relaxation, and entity

disambiguation.

In general, a given dataset will have correspondences to multiple

domain-specific ontologies. The techniques that we discussed in

this paper match the data to one ontology at a time. We still need a

mechanism to merge the modules extracted from multiple ontolo-

gies into one coherent ontology. We plan to address this problem

as future work.

REFERENCES
[1] FIBEN. https://github.com/IBM/fiben-benchmark. Accessed: 2021-06-01.

[2] FIBO. https://spec.edmcouncil.org/fibo/. Accessed: 2021-06-01.

[3] FRO. http://xbrl.squarespace.com/financial-report-ontology/. Accessed: 2021-06-

01.

[4] RxNorm. https://www.nlm.nih.gov/research/umls/rxnorm/index.html. Accessed:

2021-06-01.

https://github.com/IBM/ontology-enriched-query-answering
https://github.com/ernestojimenezruiz/locality-module-extractor
https://github.com/IBM/fiben-benchmark
https://spec.edmcouncil.org/fibo/
http://xbrl.squarespace.com/financial-report-ontology/
https://www.nlm.nih.gov/research/umls/rxnorm/index.html


[5] Schema.org. https://schema.org. Accessed: 2021-06-01.

[6] SNOMED Clinical Terms. https://www.snomed.org/snomed-ct/what-is-snomed-

ct. Accessed: 2021-06-01.

[7] S. Ahmetaj, V. Efthymiou, R. Fagin, P. G. Kolaitis, C. Lei, F. Özcan, and L. Popa.

Ontology-enriched query answering on relational databases. In IAAI, page (to
appear). AAAI Press, 2021.

[8] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. G. Ives. DBpedia:

A nucleus for a web of open data. In ISWC, pages 722–735, 2007.
[9] Y. Cao, L. Hou, J. Li, and Z. Liu. Neural collective entity linking. In COLING,

pages 675–686, 2018.

[10] Y. Cen, X. Zou, J. Zhang, H. Yang, J. Zhou, and J. Tang. Representation learning

for attributed multiplex heterogeneous network. In SIGKDD, page 1358–1368,
2019.

[11] J. Chen, G. Alghamdi, R. A. Schmidt, D. Walther, and Y. Gao. Ontology extraction

for large ontologies via modularity and forgetting. In K-CAP, pages 45–52, 2019.
[12] P. Christen. Data Matching - Concepts and Techniques for Record Linkage, Entity

Resolution, and Duplicate Detection. Data-Centric Systems and Applications.

Springer, 2012.

[13] V. Christophides, V. Efthymiou, T. Palpanas, G. Papadakis, and K. Stefanidis.

An overview of end-to-end entity resolution for big data. ACM Comput. Surv.,
53(6):127:1–127:42, 2021.

[14] J. Dai, M. Zhang, G. Chen, J. Fan, K. Y. Ngiam, and B. C. Ooi. Fine-grained concept

linking using neural networks in healthcare. In SIGMOD, pages 51–66, 2018.
[15] A. Doan, A. Y. Halevy, and Z. G. Ives. Principles of Data Integration. Morgan

Kaufmann, 2012.

[16] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange: semantics and

query answering. Theor. Comput. Sci., 336(1):89–124, 2005.
[17] D. Faria, C. Pesquita, E. Santos, M. Palmonari, I. F. Cruz, and F. M. Couto. The

agreementmakerlight ontology matching system. In OTM, pages 527–541, 2013.

[18] X. Fu, J. Zhang, Z. Meng, and I. King. Magnn: Metapath aggregated graph neural

network for heterogeneous graph embedding. In WWW, page 2331–2341, 2020.

[19] R. Goldman and J. Widom. Dataguides: Enabling query formulation and opti-

mization in semistructured databases, 1997.

[20] Y. Govind, P. Konda, P. S. G. C., P. Martinkus, P. Nagarajan, H. Li, A. Soundararajan,

S. Mudgal, J. R. Ballard, H. Zhang, A. Ardalan, S. Das, D. Paulsen, A. S. Saini,

E. Paulson, Y. Park, M. Carter, M. Sun, G. M. Fung, and A. Doan. Entity matching

meets data science: A progress report from the magellan project. In SIGMOD,
pages 389–403, 2019.

[21] B. C. Grau, I. Horrocks, Y. Kazakov, and U. Sattler. Modular reuse of ontologies:

Theory and practice. J. Artif. Intell. Res., 31:273–318, 2008.
[22] W. L. Hamilton, R. Ying, and J. Leskovec. Inductive representation learning on

large graphs. In NIPS, pages 1024–1034, 2017.
[23] X. Han, L. Hu, J. Sen, Y. Dang, B. Gao, V. Isahagian, C. Lei, V. Efthymiou, F. Özcan,

A. Quamar, Z. Huang, and V. Muthusamy. Bootstrapping natural language

querying on process automation data. In 2020 IEEE International Conference on
Services Computing, SCC 2020, Beijing, China, November 7-11, 2020, pages 170–177.
IEEE, 2020.

[24] J. Hao, C. Lei, V. Efthymiou, A. Quamar, F. Ozcan, Y. Sun, and W. Wang. Medto:

Medical data to ontology matching using hybrid graph neural networks. In

SIGKDD, 2021.
[25] M. Jammi, J. Sen, A. R. Mittal, et al. Tooling framework for instantiating natural

language querying system. PVLDB, 11(12):2014–2017, 2018.
[26] E. Jiménez-Ruiz and B. C. Grau. Logmap: Logic-based and scalable ontology

matching. In ISWC, pages 273–288, 2011.
[27] E. Jiménez-Ruiz, B. C. Grau, U. Sattler, T. Schneider, and R. B. Llavori. Safe and

economic re-use of ontologies: A logic-based methodology and tool support. In

ESWC, volume 5021, pages 185–199, 2008.

[28] E. Jiménez-Ruiz, O. Hassanzadeh, V. Efthymiou, J. Chen, and K. Srinivas. Semtab

2019: Resources to benchmark tabular data to knowledge graphmatching systems.

In A. Harth, S. Kirrane, A. N. Ngomo, H. Paulheim, A. Rula, A. L. Gentile, P. Haase,

and M. Cochez, editors, The Semantic Web - 17th International Conference, ESWC
2020, Heraklion, Crete, Greece, May 31-June 4, 2020, Proceedings, volume 12123 of

Lecture Notes in Computer Science, pages 514–530. Springer, 2020.

[29] A. E. Johnson, T. J. Pollard, L. Shen, et al. Mimic-iii, a freely accessible critical

care database. Scientific data, 3:160035, 2016.
[30] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolu-

tional networks. In ICLR, 2017.
[31] P. Kolyvakis, A. Kalousis, and D. Kiritsis. DeepAlignment: Unsupervised ontology

matching with refined word vectors. In NAACL, pages 787–798, 2018.
[32] P. Kolyvakis, A. Kalousis, B. Smith, andD. Kiritsis. Biomedical ontology alignment:

an approach based on representation learning. J. Biomed. Semant., 9(1):21:1–21:20,
2018.

[33] H. Köpcke and E. Rahm. Frameworks for entity matching: A comparison. Data
Knowl. Eng., 69(2):197–210, 2010.

[34] C. Lei, V. Efthymiou, R. Geis, and F. Ozcan. Expanding query answers on medical

knowledge bases. In EDBT, pages 567–578, 2020.
[35] C. Lei, F. Özcan, A. Quamar, A. R. Mittal, J. Sen, D. Saha, and K. Sankaranarayanan.

Ontology-based natural language query interfaces for data exploration. IEEE
Data Eng. Bull., 41(3):52–63, 2018.

[36] Y. Li, D. Tarlow, M. Brockschmidt, and R. S. Zemel. Gated graph sequence neural

networks. In ICLR, 2016.
[37] S. Mudgal, H. Li, T. Rekatsinas, A. Doan, Y. Park, G. Krishnan, R. Deep, E. Ar-

caute, and V. Raghavendra. Deep learning for entity matching: A design space

exploration. In SIGMOD, page 19–34, 2018.
[38] A. Quamar, C. Lei, D. Miller, F. Ozcan, J. Kreulen, R. J. Moore, and V. Efthymiou.

An ontology-based conversation system for knowledge bases. In SIGMOD, pages
361–376, 2020.

[39] A. Quamar, F. Özcan, D. Miller, R. J. Moore, R. Niehus, and J. Kreulen. Conver-

sational BI: an ontology-driven conversationsystem for business intelligence

applications. Proc. VLDB Endow., 13(12):3369–3381, 2020.
[40] D. Saha, A. Floratou, K. Sankaranarayanan, U. F. Minhas, A. R. Mittal, and F. Özcan.

Athena: an ontology-driven system for natural language querying over relational

data stores. PVLDB, 9(12):1209–1220, 2016.
[41] M. S. Schlichtkrull, T. N. Kipf, P. Bloem, R. van den Berg, I. Titov, and M. Welling.

Modeling relational data with graph convolutional networks. In ESWC, pages
593–607, 2018.

[42] J. Sen, C. Lei, A. Quamar, F. Özcan, V. Efthymiou, A. Dalmia, G. Stager, A. R. Mittal,

D. Saha, and K. Sankaranarayanan. ATHENA++: natural language querying for

complex nested SQL queries. Proc. VLDB Endow., 13(11):2747–2759, 2020.
[43] W. Shen, J. Wang, and J. Han. Entity linking with a knowledge base: Issues,

techniques, and solutions. IEEE Trans. Knowl. Data Eng., 27(2):443–460, 2015.
[44] T. P. Tanon, G. Weikum, and F. M. Suchanek. YAGO 4: A reason-able knowledge

base. In ESWC, pages 583–596, 2020.
[45] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio. Graph

attention networks. In ICLR, 2018.
[46] C. D. Vescovo, M. Horridge, B. Parsia, U. Sattler, T. Schneider, and H. Zhao.

Modular structures and atomic decomposition in ontologies. J. Artif. Intell. Res.,
69:963–1021, 2020.

[47] D. Vrandecic. Wikidata: a new platform for collaborative data collection. In

WWW, pages 1063–1064, 2012.

[48] A. Vretinaris, C. Lei, V. Efthymiou, X. Qin, and F. Özcan. Medical entity disam-

biguation using graph neural networks. CoRR, abs/2104.01488, 2021.
[49] X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, and P. S. Yu. Heterogeneous graph

attention network. In WWW, page 2022–2032, 2019.

[50] D. Wright, Y. Katsis, R. Mehta, and C.-N. Hsu. NormCo: Deep disease normaliza-

tion for biomedical knowledge base construction. In AKBC 2019, 2019.
[51] Y. Wu, X. Liu, Y. Feng, Z. Wang, R. Yan, and D. Zhao. Relation-aware entity

alignment for heterogeneous knowledge graphs. In IJCAI, pages 5278–5284, 2019.
[52] G. Xiao, D. Calvanese, R. Kontchakov, D. Lembo, A. Poggi, R. Rosati, and M. Za-

kharyaschev. Ontology-based data access: A survey. In IJCAI, pages 5511–5519,
2018.

[53] K. Xu, L. Wu, Z. Wang, Y. Feng, and V. Sheinin. Graph2seq: Graph to sequence

learning with attention-based neural networks. CoRR, abs/1804.00823, 2018.
[54] T. Yu, R. Zhang, K. Yang, et al. Spider: A large-scale human-labeled dataset for

complex and cross-domain semantic parsing and text-to-sql task. In EMNLP,
pages 3911–3921, 2018.

[55] C. Zhang, D. Song, C. Huang, A. Swami, and N. V. Chawla. Heterogeneous graph

neural network. In SIGKDD, page 793–803, 2019.

https://schema.org
https://www.snomed.org/snomed-ct/what-is-snomed-ct
https://www.snomed.org/snomed-ct/what-is-snomed-ct

	Abstract
	1 Introduction
	2 Data to Ontology Matching
	2.1 Entity Type Detection
	2.2 Ontology Creation and Enrichment
	2.3 Ontology to Ontology Matching

	3 Modular Ontology Reuse
	4 Applications
	4.1 Ontology-Enhanced Query Answering
	4.2 Natural Language Querying and Conversational Systems
	4.3 Entity Disambiguation

	5 Related Work
	6 Conclusion
	References

