

1

CAESAR: Context-Aware Event Stream Analytics in Real time

Olga Poppe, Chuan Lei, Elke A. Rundensteiner, and Dan Dougherty

March 18, 2016

Complex Event Processing

The **same** workload of **independent** event queries is **continuously** evaluated

Application Context

- Event compositions signify application contexts
- Most event queries are appropriate only in certain contexts
- They can be safely suspended otherwise

Examples of application contexts:

- Emergency management: normal, crowded, fire
- Health care: safe, warning, violation
- Algorithmic trading: hold, buy, sell
- Financial fraud: approved, suspicious, fraud

Traffic Management Use Case

- **140 hours idling in traffic** due to congestion in 10-worst U.S. traffic corridors per year [The Wall Street Journal]
- Health cost of \$18 billion due to traffic noise and pollution in the USA's 83 largest urban areas in 2010 [USA Today]
- 1.24 million deaths due to traffic injuries worldwide in 2010 [Wikipedia]

Traffic Management Contexts

Goal is to leverage application contexts to speed up system responsiveness

Challenges

- Rich semantics
 - Complex conditions implying a context
 - Unknown and unbounded context duration
 - Multiple inter-dependent event queries
- Readable specification
- Real time responsiveness

State-of-the-art Approaches

	CEP Systems (Esper, StreamInsight)	CAESAR	Business Models (BPMN, UML)
Expressive event queries			
Application contexts			
Context- aware optimizations			

Contributions & Outline

CAESAR system:

- Graphical model
- Context-aware algebra
- Context-driven optimization techniques
- Execution infrastructure

Performance evaluation

Outline

CAESAR Model

Application Contexts

Context Deriving Queries

Context Processing Queries

Context-aware Event Queries

Outline

CAESAR Algebra

Context-preserving Plan Generation

CAESAR Algebra Operators

- **1.** Context initiation $CI_c(I, W)$
- **2.** Context termination $CT_c(I, W)$
- **3.** Context window $CW_c(I, W)$
- **4.** Filter $FI_{\theta}(I)$
- **5.** Projection $PR_{A,E}(I)$
- 6. Event pattern P(I)

Runtime Context Maintenance

Context bit vector *W*: Context types:

Time stamp *W.time*

- Updated by the context initiation & termination operators
- Accessed by the context window operator
- Synchronized by the time driven scheduler

Translation from Query Set to Algebra Plan

DERIVE Toll(c.id, c.sec, 5) **PATTERN** NewCar c **CONTEXT** congestion

DERIVE NewCar(s.id, s.xway, s.dir, s.seg, s.lane, s.pos, s.lane) PATTERN SEQ(NOT Position f, Position s) WHERE f.sec+30=s.sec AND f.id=s.id AND f.lane≠' exit' CONTEXT congestion

Projection: <i>c.id</i> , <i>c.sec</i> , 5			
Context window: congestion			
Pattern: NewCar c			
Projection: <i>s.id, s.xway, s.dir, s.seg, s.lane, s.pos, s.sec)</i>			
Context window: congestion			
Filter: $f.sec + 30 = s.sec \land$ $f.id = s.id \land s.lane \neq' exit'$			
Pattern: SEQ(NOT Position f, Position s)			
F			

Outline

CAESAR Optimizer

CAESAR Optimizer Overview

Problem statement:

Given a workload of **context-aware event queries**, our optimization problem is to find an optimized query plan for this workload with **minimal CPU cost**.

Context-aware optimization techniques:

- Context window push down strategy
- Context workload sharing algorithm

Context Window Push Down Strategy

Performance benefits:

- Suspension of irrelevant operators
- Context-driven stream routing

Context Workload Sharing Algorithm

Context Workload Sharing Algorithm

Context Workload Sharing Algorithm

Outline

CAESAR Infrastructure & Experiments

CAESAR Architecture

Experimental Setup

Execution infrastructure:

Java 7, 1 Linux machine with 16-core 3.4 GHz CPU and 48GB of RAM

Data sets:

• Linear Road stream benchmark (LR) [1]

3 roads=1.7GB

Physical Activity Monitoring real data set (PAM) [2]
1.6GB

[1] A.Arasu et al., Linear Road: A stream data management benchmark. VLDB'04 [2] A.Reiss et al., Creating and benchmarking a new data set for physical activity monitoring. PETRA'12

For 7 roads, context-aware (CA) event stream analytics is **9**-fold faster than context-independent (CI) approach.

Context-aware Event Query Sharing

If 30 context windows of length 15 minutes process 4 event queries each and overlap by 15 minutes, workload sharing wins **6**-fold.

Outline

Conclusions

Conclusions

- CAESAR is first context-aware CEP system
- Graphical context-specification model
- Context-aware algebra
- Context-driven optimization techniques
- Execution infrastructure
- 8-fold speed up on average

Acknowledgement

- Advisors: Elke A. Rundensteiner, Dan Dougherty
- Collaborator: Chuan Lei
- DSRG group at WPI
- EDBT reviewers
- NSF grants IIS 1018443 and IIS 1343620