
Ontology-Enriched
Query Answering
on Relational Databases

S. Ahmetaj, V. Efthymiou, R. Fagin, P.G. Kolait is, C. Lei, F. Ozcan, L. Popa

The Thirty-Third Annual Conference on Innovative Applications of Artificial Intelligence (IAAI-21) February 4-6, 2021

How it started…

2
A. Quamar, C. Lei, D. Miller, F. Özcan, J. Kreulen, R. Moore, V. Efthymiou. An Ontology-Based Conversation System
for Knowledge Bases. SIGMOD 2020

Relational
Database

Well-formed
Query (SQL)

How it started…

3

Relational
Database

Well-formed
Query (SQL)

I cannot answer that.
“cephalalgia” is unknown!

logs

Many of the unknown terms are contained in SNOMED CT
and our DB actually has the data to answer such queries

By using SNOMED, we could also provide more complete answers to some queries

DL Ontologies
§Based on Description Logic

◦ a family of logic-based knowledge
representation formalisms

◦ decidable fragments of FOL

§Describe domains in terms of:
◦ concepts (aka classes)
◦ roles (aka binary relationships)

4

Medicament

Cell

Zygote

Substance

Anesthetic

Antidote

Pre-
embryonic
structure

Body
Structure

Cephalalgia

Head
finding

Migraine

Head
structure

Finding

Finding

site

Dental
Headache

Frequent
Headache

⊑

Main Challenges
§Identify and reuse only the parts of SNOMED CT that are relevant

◦ we used existing tools from different AI communities
• ontology creation from a DB, ontology matching, module extraction

◦ we designed a flexible framework that goes beyond our use case

§Answer queries expressed over the vocabulary of SNOMED CT using our data
◦ Two main approaches exist:
• Materialization:

◦ Materialize a universal solution (once) using the chase procedure from the data exchange community;
◦ compute the certain answers on arbitrary conjunctive queries over the target schema using the

materialized universal solution
• Query Rewriting: Keep the original data, but rewrite every query when it comes before evaluating it

5

Background – Data Exchange

6

Data exchange setting M = (S, T, Σst, Σt), where
§Σst is a set of source-to-target tgds (tuple-generating dependencies)
§Σt is a set of target tgds and target egds

Background – Examples of tgds and egds

§st-tgd: ∀𝑑𝑖𝑑, 𝑑𝑛, 𝑑𝑐(𝐷𝑟𝑢𝑔 𝑑𝑖𝑑, 𝑑𝑛, 𝑑𝑐 → 𝑀𝑒𝑑𝑖𝑐𝑎𝑚𝑒𝑛𝑡 𝑑𝑖𝑑 ∧ 𝐷𝑁𝑎𝑚𝑒𝑠 𝑑𝑖𝑑, 𝑑𝑛)

§t-egd : ∀𝑚𝑖𝑑, 𝑥, 𝑦 𝐷𝑁𝑎𝑚𝑒𝑠 𝑚𝑖𝑑, 𝑥 ∧ 𝐷𝑁𝑎𝑚𝑒𝑠 𝑚𝑖𝑑, 𝑦 → 𝑥 = 𝑦

§t-tgd : ∀𝑚𝑖𝑑, 𝑑𝑛(𝐷𝑁𝑎𝑚𝑒𝑠 𝑚𝑖𝑑, 𝑑𝑛 → ∃𝑎 𝐴𝐼𝑛𝑔𝑟𝑒𝑑 𝑚𝑖𝑑, 𝑎

7

did dn dc

d1 Aspirin dc1

d2 Ibuprofen dc5

…

mid

d1

d2

…

mid dn

d1 Aspirin

d2 Ibuprofen

…

Drug
Medicament

DNames

sid act.ingred.

d1 Null1

d2 Null2

…

AIngred

Source Schema S
Target Schema T

Σst

Σt

Background – Data Exchange

8

q

The certain answers of a query q over T on I,
wrt a data exchange setting M are defined as:

cert(q,I,M) = ⋂{ q(J): J is a solution for I }

Fagin et al. 2005: if J is a universal solution for I w.r.t. M,
then the certain answers of every conj. query q over T
can be obtained by evaluating q on J
and then removing all tuples containing null values

R. Fagin, P.G. Kolaitis, R.J. Miller, L. Popa. Data exchange: semantics and query answering. Theor. Computer Science 2005

M = (S, T, Σst, Σt)

Problem: the chase may not always terminate!

Background – ELH terminologies
§Concepts constructs: 𝐶 ≔ 𝐴 ⊤ | ∃𝑟. 𝐶 𝐶 ⊓ 𝐷

§An ELH terminology is a set of
◦ concept definitions 𝐴 ≡ 𝐶,
◦ concept inclusions 𝐴 ⊑ 𝐶, and
◦ role inclusions 𝑟 ⊑ 𝑠

9

Contributions
§Adoption of AI and data exchange methods and tools in real medical use case

§Backing our use case with concrete theoretical guarantees
◦ we define acyclic ELHfdr and show it is C-stratified
Øthe standard chase always terminates in polynomial time

§A reference framework architecture for ontology-enriched query answering
◦ available on github (https://github.com/IBM/ontology-enriched-query-answering)

§Experimental evaluation showing the benefits of our framework
◦ more query answers by exploiting SNOMED CT as an external reference ontology

10

https://github.com/IBM/ontology-enriched-query-answering

Framework
Architecture
• Step 1: Ontology Creation

• Step 2: Matchings Generation

• Step 3: Module Extraction

• Step 4: Unifying the TBox

• Step 5: Query Answering via the Chase

11

Relational
Database (S, I)

Query (q)

Certain answers
(cert(q,I,M))

Chase
output

Ontology
(T1)

Creation

External Ontology (T2)

Matchings
(C)

Generation

Unifying
TBox (T)

Module
(T2’)

Extraction

signature

(𝕊)

t-tgds
t-egds

1 3

4

2

Schema-level

Data5

S

source instance
(I) dependencie

s

Σ(T
)

st-tgds

Chase

renaming
T1

source schema
(S)

targe
t s

ch
ema

(T)

Ontology Creation [Lei et al. 2018]

drugId drugName drugClass

d1 Aspirin dc1

…

12Lei et al. Ontology-Based Natural Language Query Interfaces for Data Exploration. IEEE Data Eng. Bull 2018

drugClassId drugClassName

dc1 NSAID

…

Drug DrugClass

sdrugId specialization

d8 COVID-19

…

SpecialDrug

Drug

Special
Drug

Drug
Class

String
drugName String

drugClass
Name

Stringspecialization

drugClass

⊑

funct(drugName)
funct(drugClass)
funct(drugClassName)
funct(specialization)

Matchings Generation

13

Drug

Special
Drug

Drug
Class

String
drugName

String
drugClass

Name

String
specialization

drugClass

⊑
Medicament

Cell

Zygote

Substance

Anesthetic
Antidote

Pre-embryonic
structure

Body
Structure

Body
Substance

Fibril
Breath

Matchings C = {(Drug, Medicament)}

• Several methods tested, including SOTA in ontology
matching (LogMap, AML) with unsatisfactory results

• Ended up providing matchings with manual inspection

Ontology 1
Ontology 2

Module Extraction [Cuenca Grau et al. 2009]

§Given a signature S, retain a small
subset of the ontology that captures
only the meaning of the terms in S.

§ExpTime-complete or even undecidable
◦ depending on the ontology expressivity

§We use a syntactic locality-based
module extraction [Grau et al. 2009]

◦ ⊥T*-syntactic locality

§S = {N2 | (N1,N2) ∈ C}
◦ Running example: C = {(Drug, Medicament)}
• S = {Medicament}

14

Medicament
Cell

Zygote

Substance

Anesthetic
Antidote

Pre-embryonic
structure

Body
Structure

Body
Substance

Fibril
Breath

Cuenca Grau et al. Extracting Modules from Ontologies: A Logic-Based Approach. Modular Ontologies, LNCS 2009

Unifying the TBox
§To produce the unified TBox 𝑇:

◦ for every matching (N1,N2) ∈ C rename every occurrence of N1 in Ontology 1 with N2

◦ return the union of Ontology 1 (after renaming) and the S-module from Ontology 2

15

Drug

Special
Drug

Drug
Class

String

drugName

String

drugClass
Name

String

specialization

drugClass
Medicament

Substance

Anesthetic
Antidote

Special
Drug

Drug
Class

String

drugName

String

drugClass
Name

String specialization

drugClass Medicament

Substance

Anesthetic
Antidote

C = {(Drug, Medicament)}

Expressivity of the Unified TBox (use case)
§SNOMED CT belongs to the acyclic ELH fragment of Description Logics

§Ontology generated from the DB falls under acyclic EL, extended with domain and range
restrictions, as well as functionality assertions

ØThe unified TBox can be expressed in acyclic ELHfdr

§ELHfdr is ELH extended with domain and range restrictions, and limited functionality
◦ (simplified): no functional roles are allowed on the right-hand side of axioms

§Acyclicity intuition (proper definitions in the paper)
◦ ELH acyclicity: prevents a concept from directly or indirectly referring to (aka using) itself
◦ ELHfdr acyclicity: need additional conditions to take care of domain & range restrictions and functionality
• Example: 𝐴 ⊑ ∃𝑟 𝑟𝑛𝑔(𝑟) ⊑ 𝐴 (acyclic under the ELH acyclicity conditions, but results in infinite chase)

16

Chase – st-tgds and t-egds
§Our schema exchange setting M = (S, T, Σst, Σt):

◦ use the relational schema 𝑆 of the input DB as the source schema S
◦ use the unified TBox 𝑇 as the target schema T

§Use the following rule to generate st-tgds from every relation 𝑅 of 𝑆:

𝑅 𝑥), … , 𝑥* → 𝑅+ 𝑥) ∧ 𝑅+),- 𝑥), 𝑥- ∧ ⋯∧ 𝑅+),* 𝑥), 𝑥* ,

where 𝑥) is the primary key of 𝑅, and 𝑅’, 𝑅+),. are fresh relation names.
If (𝑅, 𝑅’’) ∈ C, we replace 𝑅+ 𝑥) above with 𝑅+′ 𝑥) , i.e., we rename 𝑅 as 𝑅’’

§Every functional role 𝑟 gives rise to the t-egd:
𝑟 𝑥, 𝑦 ∧ 𝑟 𝑥, 𝑧 → 𝑦 = 𝑧

17

Chase – t-tgds
§Fact: for every EL concept 𝐶, there is a conj. query 𝑞!(𝑥) with a free variable 𝑥, s.t. 𝐶(𝑥) ≡ 𝑞!(𝑥)

◦ Case 1: 𝑞"(𝑥) ≔ ∃'𝑦𝜑"('𝑦, 𝑥), where '𝑦 is a non-empty tuple of variables
◦ Case 2: 𝑞" 𝑥 ≔ 𝐴# 𝑥 ∧ ⋯∧ 𝐴$(𝑥), where 𝐴# 𝑥 ,… , 𝐴$(𝑥) are concept names

§The tgds arising from an ELHfdr terminology have one of the following seven types*:
1) 𝐴 𝑥 → ∃'𝑦𝜑"('𝑦, 𝑥) (arises from 𝐴 ⊑ 𝐶, where 𝐶 is of Case 1)
2) 𝐴 𝑥 → 𝐴# 𝑥 ∧ ⋯∧ 𝐴$(𝑥) (arises from 𝐴 ⊑ 𝐶, where 𝐶 is of Case 2)
3) 𝜑" '𝑦, 𝑥 → 𝐴 𝑥 (arises from 𝐶 ⊑ 𝐴, where 𝐶 is of Case 1)
4) 𝐴# 𝑥 ∧ ⋯∧ 𝐴$ 𝑥 → 𝐴 𝑥 (arises from 𝐶 ⊑ 𝐴, where 𝐶 is of Case 2)
5) 𝑟# 𝑥, 𝑦 → 𝑟% 𝑥, 𝑦 (arises from 𝑟# ⊑ 𝑟%)
6) 𝑟 𝑥, 𝑦 → 𝐴(𝑥) (arises from 𝑑𝑜𝑚(𝑟) ⊑ 𝐴)
7) 𝑟 𝑥, 𝑦 → 𝐴(𝑦) (arises from 𝑟𝑛𝑔(𝑟) ⊑ 𝐴)

18

*We treat each axiom 𝐴 ≡ 𝐶 as two inclusions 𝐴 ⊑ 𝐶 and 𝐶 ⊑ 𝐴

Chase Termination

[Meier, Schmidt, and Lausen 2009]: if a set Σ of tgds and egds is C-stratified,
then, on every input database instance J, the standard chase w.r.t. Σ terminates in
time bounded by a polynomial in the size of J.

19

Theorem: Let 𝑇 be an acyclic ELHfdr terminology and let Σ(𝑇)
be the associated set of tgds and egds. Then Σ(𝑇) is C-stratified.

M. Meier, M. Schmidt, G. Lausen. On Chase Termination Beyond Stratification. VLDB 2009

Evaluation
§Input DB (MDB): 62 relations of arities from 2 to 11, 158 FKs, 500k+ tuples, 62.3MB

§Ontologies:
◦ MDB ontology (Step 1): 49 concepts, 170 roles (all with domain & range), 156 functional
◦ SNOMED CT: 356k concepts, 119 roles (none is functional or with domain/range restrictions)
◦ 12 matchings identified (with manual inspection, after running LogMap, AML)
• signature S given for module extraction contains 12 elements

◦ S-module in SNOMED CT: 35 concepts, 7 roles
◦ Unified TBox: 72 concepts, 177 roles, 156 functional, 170 with domain & range restrictions

§Chase:
◦ Number of tgds: 62 st-tgds, 154 t-tgds, 156 t-egds
◦ Chase execution time: 1,676ms (870ms for st-tgds, 806ms for t-tgds and t-egds)
◦ Chase space overhead: 24% (62.3 MB used for the source instance; 77.5 MB used for the chase output)

20

Evaluation Results

21

Query-answering times ranged from 1ms (for q13-q15) to 576ms (for q3), averaging 64ms.

Queries selected from logs Jan-June 2019

§Original Answers: just renaming

§Ontology-Enriched Answers: using our
framework

Beneficial for two types of queries:

§CQs whose conjuncts all appear in MDB,
but we learned something new about
them from SNOMED CT (q1-q5)

§CQs with some conjuncts unknown (q6-q15)
◦ could not be answered originally

Thank you!

The source code of this work is publicly available:

https://github.com/IBM/ontology-enriched-query-answering

22

https://github.com/IBM/ontology-enriched-query-answering

