
Sharon: Shared Online Event Sequence Aggregation

Olga Poppe1, Allison Rozet1, Chuan Lei2, Elke A. Rundensteiner1, and David Maier3
1Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609

2IBM Research, Almaden, 650 Harry Rd, San Jose, CA 95120
3Portland State University, 1825 SW Broadway, Portland, OR 97201

1opoppe|amrozet|rundenst@wpi.edu, 2chuan.lei@ibm.com, 3maier@pdx.edu

Abstract—Streaming systems evaluate massive workloads of
event sequence aggregation queries. State-of-the-art approaches
suffer from long delays caused by not sharing intermediate
results of similar queries and by constructing event sequences
prior to their aggregation. To overcome these limitations, our
Shared Online Event Sequence Aggregation (SHARON) approach
shares intermediate aggregates among multiple queries while
avoiding the expensive construction of event sequences. Our
SHARON optimizer faces two challenges. One, a sharing decision
is not always beneficial. Two, a sharing decision may exclude
other sharing opportunities. To guide our SHARON optimizer, we
compactly encode sharing candidates, their benefits, and conflicts
among candidates into the SHARON graph. Based on the graph,
we map our problem of finding an optimal sharing plan to the
Maximum Weight Independent Set (MWIS) problem. We then
use the guaranteed weight of a greedy algorithm for the MWIS
problem to prune the search of our sharing plan finder without
sacrificing its optimality. The SHARON optimizer is shown to
produce sharing plans that achieve up to an 18-fold speed-up
compared to state-of-the-art approaches.

I. INTRODUCTION

Complex Event Processing (CEP) is a prominent technology

for supporting time-critical streaming applications ranging

from public transport to e-commerce. CEP systems contin-

uously evaluate massive query workloads against high-rate

event streams to detect event sequences of interest, such as ve-

hicle trajectories and purchase patterns. Aggregation functions

are applied to these sequences to provide summarized insights,

such as the number of trips on a certain route to predict traffic

jams or the number of items purchased after buying another

item for targeted advertisement. CEP applications must react

to critical changes of these aggregates in real time to compute

best routes or increase profit [1], [2], [3].

Motivating Examples. We now describe two time-critical

multi-query event sequence aggregation scenarios.

• Urban transportation services. With the growing popular-

ity of ridesharing services such as Uber and Lyft, their systems

face multiple challenges including real-time analysis of vehicle

trajectories, geospatial prediction, and alerting. These systems

evaluate query workloads against high-rate streams of drivers’

position reports and riders’ requests to infer the current supply

and demand situation on each route. They incorporate traffic

conditions to compute the best route for each trip. They instan-

taneously react to critical changes to prevent waste of time,

reduce costs and pollution, and increase riders’ satisfaction

and drivers’ profit. With thousands of drivers and over 150

requests per minute in New York City [4], [5], real-time traffic

analytics and ride management is a challenging task.

Queries q1–q7 in Figure 1 compute the count of trips on

a route as a measure of route popularity. They consume a

stream of vehicle-position reports. Each report carries a time

stamp in seconds, a car identifier and its position. Here, event

type corresponds to a vehicle position. For example, a vehicle

on Main Street sends a position report of type MainSt. Each

trip corresponds to a sequence of position reports from the

same vehicle (as required by the predicate [vehicle]) during

a 10-minutes long time window that slides every minute. The

predicates and window parameters of q2–q7 are identical to q1
and thus are not shown for compactness. Table I summarizes

the common patterns in this workload. For example, pattern

p1 = (OakSt , MainSt) appears in queries q1–q4. Sharing

the aggregation of common patterns among multiple similar

queries is vital to speed up system responsiveness.

Fig. 1: Traffic monitoring workload Q

Pattern p Queries Qp ⊆ Q

p1 = (OakSt ,MainSt) q1, q2, q3, q4
p2 = (ParkAve,OakSt) q3, q4
p3 = (ParkAve,OakSt ,MainSt) q3, q4
p4 = (MainSt ,WestSt) q2, q4
p5 = (OakSt ,MainSt ,WestSt) q2, q4
p6 = (MainSt ,StateSt) q1, q5
p7 = (ElmSt ,ParkAve) q6, q7

TABLE I: Sharing candidates of the form (p,Qp) in the workload Q

• E-commerce systems monitor customer click patterns to

identify the purchase of which item increases the chance of

buying another item. Such purchase dependencies between

items serve as a foundation for prediction, planning, and

targeted ads on an online shopping website.

Queries q8–q11 consume a stream of item purchases. Each

event carries a time stamp in seconds, customer identifier, type

of item, e.g., Laptop. The choice of a laptop often determines

the laptop cases, adapters, keyboard protectors, etc. that may

be purchased next (q8–q10). A laptop may even determine a

737

2018 IEEE 34th International Conference on Data Engineering

2375-026X/18/$31.00 ©2018 IEEE
DOI 10.1109/ICDE.2018.00072



customer’s phone preferences, e.g., Mac users are likely to

choose an iPhone over other phones. The model of an iPhone,

in turn, determines screen protectors for it (q11). Thus, queries

q8–q11 compute the count of item sequences during a 20-

minute time window that slides every minute. The pattern

(Laptop, Case) appears in all four queries in this workload.

The aggregation of such patterns could be shared among these

queries to achieve prompt updates of the recommendation

model according to dynamically changing user preferences.

Fig. 2: Purchase monitoring workload

State-of-the-Art Approaches can be divided into three

groups (Figure 3):
• Non-shared two-step approaches, including Flink [6],

SASE [3], Cayuga [7], and ZStream [8], evaluate each query

independently from other queries in the workload. Further-

more, these approaches do not offer optimization strategies

specific to event sequence aggregation queries. Without special

optimization techniques, these approaches first construct event

sequences and then aggregate them. Since the number of event

sequences is polynomial in the number of events [3], [9], event

sequence construction is an expensive step. Our experiments in

Section VIII confirm that such a non-shared two-step approach

implemented by the popular open-source streaming system

Flink [6] does not terminate, even for low-rate streams of a

few hundred events per second.

Fig. 3: Event sequence aggregation approaches

• Shared two-step approaches such as SPASS [10] and

ECube [11] focus on shared event sequence construction,

not on event sequence aggregation. If these approaches are

applied to aggregate event sequences, they would construct

all sequences prior to their aggregation. This event sequence

construction step degrades system performance. Our experi-

ments in Section VIII confirm that such a shared two-step
approach implemented by SPASS [3] requires 41 minutes per

window, even for low-rate streams of a few hundred events per

second. Such long delays are not acceptable for time-critical

applications that require a response within a few seconds [12].
• Non-shared online approaches such as A-Seq [9] and

GRETA [13] compute event sequence aggregation online,

i.e., without constructing the sequences. A-Seq incrementally

maintains a set of aggregates for each pattern and instanta-

neously discards each event once it updates the aggregates.

GRETA extends A-Seq to a broader class of queries and thus

has higher computation costs. Neither of these approaches

tackles the sharing optimization problem to determine which

queries should share the aggregation of which patterns such

that the latency of a workload is minimized – which is the

focus of this paper. These approaches lack optimizers that can

identify shared computations among multiple queries.

Challenges. We tackle the following open problems:

• Online yet shared event sequence aggregation. These two

optimization techniques cannot be simply combined because

they impose contradictory constraints on the underlying execu-

tion strategy. For example, if query q4 shares the aggregation

results of patterns p2 and p4 with other queries (Table I),

the aggregates for p2 and p4 must be combined to form

the final results for q4. To ensure correctness, this result

combination must be aware of the temporal order between

sequences matched by p2 and p4 and their expiration. To

analyze these temporal relationships, event sequences must be

constructed. This requirement contradicts the key idea of the

online approaches that avoid event sequence construction.

• Benefit of sharing. Sharing the aggregation computation

for a pattern p by a set of queries Qp containing p is not always

beneficial, since this sharing may introduce considerable CPU

overhead for combining shared intermediate aggregates to

form the final results for each query in Qp. Thus, an accurate

sharing benefit model is required to assess the quality of a

sharing plan.

• Intractable sharing plan search space. The search space

for a high-quality sharing plan is exponential in the number of

sharing candidates (Table I). Since the event rate may fluctuate,

the benefit of sharing a pattern may change over time. To

achieve a high sharing benefit, the sharing plan may have

to be dynamically adjusted. Hence, an effective yet efficient

optimization algorithm for sharing plan selection is required.

Fig. 4: SHARON graph for the traffic use case (Figure 1)

Our SHARON Approach. We propose the Shared Online

Event Sequence Aggregation (SHARON) optimization tech-

niques to tackle these challenges. Since sharing a pattern p
by a set of queries Qp is not always beneficial, we develop

a sharing benefit model to assess the quality of a sharing

candidate (p,Qp). The model compares the gain of sharing

p among queries Qp to the overhead of combining shared

aggregates of p to form the final results for each query in Qp.

Non-beneficial candidates are pruned. Since a decision to share

a pattern may prevent the sharing of another pattern by the

738



same query, we define the notion of sharing conflicts among

sharing candidates. We compactly encode sharing candidates

as vertices and conflicts among these candidates as edges

of the SHARON graph (Figure 4). Each vertex is assigned a

weight that corresponds to the benefit of sharing the respective

candidate. Based on the graph, we map our Multi-query Event

Sequence Aggregation problem to the Maximum Weight Inde-

pendent Set (MWIS) problem. We then utilize the guaranteed

minimal weight of the approximate algorithm GWMIN [14]

for MWIS to prune conflict-ridden candidates. Since conflict-

free candidates always belong to an optimal sharing plan,

they can also be excluded from the search early on. Based

on the reduced graph, our sharing plan finder further prunes

sharing plans with conflicts and returns an optimal plan (i.e.,

plan with minimal estimated latency) to guide our executor

at runtime. In summary, SHARON seamlessly combines two

optimization strategies into one integrated solution. Namely,

it shares sequence aggregation among multiple queries, while

computing sequence aggregation online.

Contributions. Our key innovations are the following.

1) We design the sharing benefit model to assess the quality

of a sharing candidate. Non-beneficial candidates are pruned.

2) We identify sharing conflicts among candidates and

encode candidates, their benefits, and conflicts among them

into the SHARON graph.

3) We map our Multi-query Event Sequence Aggregation

problem to the Maximum Weight Independent Set (MWIS)

problem and utilize the guaranteed weight of the approximate

algorithm for MWIS to prune conflict-ridden candidates.

4) Based on the reduced SHARON graph, we introduce the

sharing plan finder that prunes sharing plans with conflicts

and returns an optimal sharing plan.

5) Our experiments using real data sets [4], [12] demonstrate

that sharing plans produced by the SHARON optimizer achieve

an 18-fold speed-up and use two orders of magnitude less

memory compared to Flink [6], A-Seq [9], and SPASS [10].

Outline. Section II provides an overview of our approach.

We define the sharing benefit model and sharing conflicts in

Sections III–IV. We reduce the search space and design the

sharing plan finder in Sections V–VI. We discuss extensions of

our core approach in Section VII. Experiments are described in

Section VIII. Section IX covers related work, while Section X

concludes the paper and describes future work.

II. SHARON APPROACH OVERVIEW

A. Sharon Data and Query Model

Time is represented by a linearly ordered set of time points
(T,≤), where T ⊆ Z≥ (non-negative integers). An event is a

message indicating that something of interest to the application

happened in the real world. An event e has a time stamp
e.time ∈ T assigned by the event source. An event e belongs

to a particular event type E, denoted e.type = E and described

by a schema that specifies the set of event attributes and the

domains of their values. Events are sent by event producers

(e.g., vehicles) on an input event stream I. An event consumer

(e.g., carpool system) monitors the stream with a workload of

queries that detect and aggregate event sequences. We borrow

the query syntax and semantics from SASE [1].

Definition 1: (Event Sequence Pattern) Given event types

E1, . . . El, an event sequence pattern has the form P =
(E1 . . . El) where l ∈ N, l ≥ 1, is the length of P .

Given a stream I , an event sequence s = (e1 . . . el) is a

match of a pattern P if ∀i, j ∈ N, 1 ≤ i < j ≤ l, the following

conditions hold: ei, ej ∈ I , ei.type = Ei, ej .type = Ej , and

ei.time < ej .time . Event e1 is called a START event, el is an

END event, and {e2, . . . , el−1} are MID events of s.

Definition 2: (Event Sequence Aggregation Query) An

event sequence aggregation query q consists of five clauses:

• Aggregation result specification (RETURN clause),

• Event sequence pattern P (PATTERN clause),

• Predicates θ (optional WHERE clause),

• Grouping G (optional GROUP-BY clause), and

• Window w (WITHIN and SLIDE clause).

A query q requires that all events in an event sequence s are

matched by the pattern P (Definition 1), satisfy the predicates

θ, have the same values of the grouping attributes G, and

are within one window w. Event sequences matched by q are

grouped by the values of G. The aggregation function of q is

applied to each group and a result is returned per group and

per window. We focus on distributive (such as COUNT, MIN,

MAX, SUM) and algebraic aggregation functions (such as AVG),

since they can be computed incrementally [15].

Let e be an event of type E and attr be an attribute of

e. COUNT(∗) returns the number of all sequences per group,

while COUNT(E) computes the number of all events e in

all sequences per group. MIN(E.attr) (MAX(E.attr)) returns

the minimal (maximal) value of attr for all events e in all

sequences per group. SUM(E.attr) calculates the summation

of the value of attr of all events e in all sequences per group.

Lastly, AVG(E.attr) is computed as SUM(E.attr) divided by

COUNT(E) per group.

Assumptions. To initially focus the discussion, we assume

that: (1) A pattern p is shared among all queries containing

p. (2) All queries have the same predicates, grouping, and

windows. (3) An event type appears at most once in a pattern.

(4) The workload is static. We sketch extensions of our

approach to relax these assumptions in Section VII.

B. Sharon Framework

We target time-critical applications that require aggregation

results within a few seconds (Section I). Given a workload Q
and a stream I , the Multi-query Event Sequence Aggregation
(MESA) Problem is to determine which queries share the

aggregation of which patterns (i.e., a sharing plan P) such

that the latency of evaluating the workload Q according to
the plan P against the stream I is minimal.

To solve this problem, our SHARON framework deploys the

following components (Figure 5). Given a workload Q, our

Static Optimizer finds an optimal sharing plan at compile

time. To this end, it identifies sharing candidates of the form

(p,Qp) where p is a pattern that could potentially be shared

by a set of queries Qp ⊆ Q. It then estimates the benefit

739



of each candidate (p,Qp) (Section III), determines sharing

conflicts among these candidates, and compactly encodes all

candidates, their benefits and conflicts into a SHARON graph

(Section IV). Based on the graph, the optimizer prunes large

portions of the search space (Section V) and returns an optimal

sharing plan (Section VI). Based on this plan, our Runtime
Executor computes the aggregation results for each shared

pattern and then combines these shared aggregations to obtain

the final results for each query in the workload Q (Section III).

Fig. 5: SHARON framework

III. SHARING BENEFIT MODEL

Our optimizer first identifies sharing candidates in a work-

load (Section III-A). It then decides whether to apply the Non-
Shared or the Shared method to each query (Sections III-B–

III-C). Both methods are borrowed from A-Seq [9]. Lastly, it

estimates the benefit of sharing each candidate (Section III-D).

A. Sharing Candidate

First, our optimizer identifies those patterns that could

potentially be shared by queries in a given workload.

Definition 3: (Sharable Pattern, Sharing Candidate) Let

Q be a workload and p be a pattern that appears in queries

Qp ⊆ Q. The pattern p is sharable in Q if p.length > 1 and

|Qp| > 1. A sharable pattern p and queries Qp constitute a

sharing candidate, denoted as (p,Qp).
Existing pattern mining approaches can detect sharable

patterns. Due to space constraints, they are described in [16].

The pattern P i of a query qi ∈ Qp consists of three sub-

patterns, namely, prefix i, p, and suffix i defined below.

Definition 4: (Prefix and Suffix of a Sharable Pattern in
a Query) Let P i = (Ei

1 . . . E
i
n) be the pattern of a query qi

and p = (Ei
m . . . Ei

m+l) be a sharable pattern that appears

in qi where m, l, n ∈ N, 1 ≤ m, and m + l ≤ n. Then

prefix i = (Ei
1 . . . E

i
m−1) is called the prefix and suffix i =

(Ei
m+l+1 . . . E

i
n) is called the suffix of p in qi.

B. Non-Shared Method

While A-Seq [9] considers grouping, predicates, negation,

and various aggregation functions, we now sketch only its

key ideas, namely, online event sequence aggregation and

event sequence expiration. We use event sequence count as

an example, i.e., COUNT(*) (Definition 2).

Online Event Sequence Aggregation A-Seq computes the

count of event sequences online, i.e., without constructing and

storing these event sequences. To this end, it maintains a count

for each prefix of a pattern. The count of a prefix of length

j is incrementally computed based on its previous value and

the new value of the count of the prefix of length j − 1.

Example 1: Let an event be described by its type and time

stamp, e.g., a1 is an event of type A with time stamp 1.

In Figure 6(a), we count event sequences matched by the

pattern (A,B), denoted count(A,B). A count is maintained

for each prefix of the pattern, i.e., for (A) and (A,B). The

value of count(A,B) is updated every time a b arrives by

summing count(A) and count(A,B). For example, when

b4 arrives, it is appended to each previously matched a to

form new sequences (a1, b4) and (a2, b4). The number of new

sequences is count(A) = 2. In addition, the previously formed

sequence (a1, b2) is kept. The number of previous sequences

is count(A,B) = 1. Thus, count(A,B) is updated to 3.

(a) Online sequence aggregation (b) Event sequence expiration

Fig. 6: Non-Shared method

Event Sequence Expiration. Due to the sliding window

semantics of our queries (Definition 2), event sequences ex-

pire over time. To avoid the re-computation of all affected

aggregates, we observe that a START event of a sequence

(Definition 1) expires sooner than any other event in it. Thus,

we maintain the aggregates per each matched START event.

When a new event arrives, only the counts of not-expired

START events are updated. When an END event e arrives, it

updates the final counts for all windows that e falls into.
Example 2: In Figure 6(b), assume a window of length four

slides by one. A count is now maintained per each matched

a. When b5 arrives, a1 is expired, count(a1, B) is ignored,

count(a2, B) and count(A,B) are updated for window w2.
Data Structures. Our SHARON Executor maintains a hash

table that maps a pattern to its count. Thus, we can access and

update a count in constant time.
Time Complexity. The query qi processes each event that

it matches. The rate of matched events is computed as the sum

of rates of all event types in the pattern P i of qi (Definition 4):

Rate(P i) =
n∑

j=1

Rate(Ei
j) (1)

Since counts are maintained per START event and an event

type appears at most once in a pattern, each matched event

updates one count per each not-expired START event. There

are Rate(Ei
1) START events. In summary, the time complexity

of processing the query qi by the Non-Shared method is:

NonShared(p, qi) = Rate(Ei
1)× Rate(P i) (2)

For the set of queries Qp, the time complexity corresponds

to the summation of the time complexity for each query qi.

NonShared(p,Qp) =
∑

qi∈Qp

NonShared(p, qi) (3)

740



C. Shared Method

Let (p,Qp) be a sharing candidate (Definition 3). Let

preffix i and suffix i be the prefix and the suffix of p in a

query qi ∈ Qp (Definition 4). The aggregates for preffix i, p,

and suffix i are combined to obtain the aggregate for qi. Due to

event sequence semantics, the sequences matched by preffix i

must appear before the sequences matched by p which in turn

must appear before the sequences matched by suffix i in the

stream. To this end, the executor performs two steps:

(1) Count computation. Counts are maintained per each

START event of prefix i, p, and suffix i (Section III-B).

(2) Count combination. The count of prefix i is multiplied

with the count for each START event of p. The resulting counts

are summed to obtain count(preffix i, p). This count is further

combined with the count of suffix i analogously.

Fig. 7: Shared method

Example 3: In Figure 7, we compute the count of (A,B,
C,D) based on the counts of (A,B) and (C,D). Assum-

ing that a1–d8 belong to the same window, count(A,B)
is computed as shown in Figure 6(a). In addition, a count

for each c (i.e., c3 and c7) is maintained. When c3 arrives,

count(A,B) = 1. We multiply it with count(c3, D) = 2 to

obtain count(A,B, c3, D) = 2. Analogously, when c7 arrives,

count(A,B) = 5. It is multiplied with count(c7, D) = 1 to

get count(A,B, c7, D) = 5. Lastly, we sum these counts to

obtain count(A,B,C,D) = 7.

Time Complexity. 1) Count computation. Since the shared

pattern p is processed once for all queries in Qp, the time

complexity of processing each query qi by the Shared method

corresponds to the sum of the time complexity of processing

prefix i and suffix i of qi.

Comp(p, qi) = Rate(Ei
1)× Rate(prefix i)+

Rate(Ei
m+l+1)× Rate(suffix i)

(4)

2) Count combination. The time complexity of count

multiplication is the product of the number of counts.

Comb(p, qi) = Rate(Ei
1)× Rate(Em)×

Rate(Ei
m+l+1)

(5)

The time complexity of processing qi by the Shared method

is the sum of the time complexity of these two steps.

Shared(p, qi) = Comp(p, qi) + Comb(p, qi) (6)

For the set of queries Qp, the time complexity corresponds

to the summation of time complexity for each query qi. In

contrast to the Non-Shared method (Equation 3), the pattern

p is computed once by the Shared method.

Shared(p,Qp) = Rate(Em)× Rate(p)+∑
qi∈Qp

Shared(p, qi)
(7)

D. Benefit of a Sharing Candidate

Definition 5: (Benefit of a Sharing Candidate) The benefit

of sharing a pattern p by the set of queries Qp is computed as

the difference between the time complexity of the Non-Shared

and Shared methods (Equations 3 and 7):

BValue(p,Qp) = NonShared(p,Qp)− Shared(p,Qp) (8)

A sharing candidate (p,Qp) is called beneficial if BValue(p,
Qp) > 0. It is called non-beneficial otherwise.

Non-Beneficial Candidate Pruning. All non-beneficial can-

didates can be excluded from further analysis.

Based on this cost model, we conclude that the number
of queries, the length of their patterns, and the stream rate
determine the benefit of sharing. We experimentally study the

effects of these factors in Section VIII.

IV. SHARING CONFLICT MODELING

A decision to share a pattern p by a query q ∈ Qp may

prevent sharing another pattern p′ by q if p and p′ overlap in

q. Such sharing candidates are said to be in a sharing conflict.
We now encode sharing candidates, their benefit, and conflicts

into the SHARON graph. Based on the graph, we then reduce

the search space of our sharing plan finder (Sections V–VI).

Example 4: In Table I, queries q3 and q4 contain the

overlapping patterns p2 = (ParkAve,OakSt) and p1 =
(OakSt ,MainSt). Since the executor computes and stores

the aggregates for a pattern as a whole (Section III), q3
and q4 can either share p1 or p2, but not both. Thus, the

sharing candidates (p1, {q1, q2, q3, q4}) and (p2, {q3, q4}) give

“contradictory instructions” for q3 and q4. These candidates

are said to be in a sharing conflict. However, if p1 were to be

shared only by q1 and q2, the sharing conflict between these

candidates would be resolved. We sketch the techniques for

sharing conflict resolution in Section VII.

Definition 6: (Sharing Conflict) Let pA = (A0 . . . An) and

pB = (B0 . . . Bm) be patterns and QA and QB be query sets.

The sharing candidates (pA, QA) and (pB , QB) are in sharing
conflict if pA overlaps with pB in a query q ∈ QA ∩QB , i.e.,

∃k ∈ N, 0 ≤ k ≤ n,m An−k . . . An = B0 . . . Bk in q. The

query q causes the conflict between (pA, QA) and (pB , QB).
Definition 7: (Valid Sharing Plan) A sharing plan P is a

set of sharing candidates. P is valid if it contains no candidates

that are in conflict with each other. P is invalid otherwise.

Definition 8: (Score of a Sharing Plan) The score of a

sharing plan P = {(p1, Qp1), . . . , (ps, Qps)} is:

Score(P) =
s∑

j=1

BValue(pj , Qpj) (9)

Definition 9: (Optimal Sharing Plan) Let Pval be the set

of all valid sharing plans. Popt ∈ Pval is an optimal sharing

plan if �P ∈ Pval with Score(P) > Score(Popt).

741



Algorithm 1 SHARON graph construction algorithm

Input: A hash table H mapping each sharable pattern p to a

list of queries Qp that contain p
Output: SHARON graph G = (V,E)

1: V ← ∅; E ← ∅; G← (V,E)
2: for each p in H do Qp ← H.get(p)
3: if BValue(p,Qp) > 0 and Qp.size > 1 then
4: v ← (p,Qp); v.weight ← BValue(p,Qp))
5: V ← V ∪ v
6: for each u in V do
7: if v and u are in sharing conflict then
8: E ← E ∪ (v, u)
9: return G

Example 5: Given the workload in Figure 1, the plan P =
{(p2, {q3, q4}); (p4, {q2, q4})} is valid. Its sharing candidates

are not in conflict since the patterns p2 = (ParkAve,OakSt)
and p4 = (MainSt ,WestSt) do not overlap. However, P
is not an optimal plan because Score(P) = 24 is not

maximal among all valid plans. Indeed, another valid plan

{(p1, {q1, q2, q3, q4})} has higher score 25.

Definition 10: (SHARON Graph) Let S be the set of

sharable patterns in a workload Q. The SHARON graph G =
(V,E) has a set of weighted vertices V and a set of undirected

edges E. Each vertex v ∈ V represents a sharing candidate

(p,Qp) where p ∈ S is a pattern and Qp ⊆ Q is the set

of all queries containing p. Each vertex is assigned a weight

BValue(p,Qp) > 0 that corresponds to the benefit value of

(p,Qp) (Equation 8). Each edge (v, u) ∈ E represents a

sharing conflict between the candidates v, u ∈ V .

Example 6: Figure 4 shows the SHARON graph for the

traffic monitoring workload in Figure 1 and Table I.

SHARON Graph Construction Algorithm consumes a

hash table H that maps each sharable pattern p to the list

of queries Q that contain p. If a pattern p is beneficial to be

shared by at least two queries, the vertex v = (p,Qp) with

weight BValue(p,Qp) is inserted into the graph (Lines 3–5

in Algorithm 1). Non-beneficial candidates are omitted. The

edges representing the sharing conflicts between v and other

vertices in the graph are inserted (Lines 6–8). The graph is

returned at the end (Line 9).

Data Structures. We implement the SHARON graph as an

adjacency list to efficiently retrieve the neighbors of a vertex

v, i.e., identify the sharing conflicts of v. Each vertex stores a

sharable pattern p, a list of queries Qp that contain p, and the

benefit value of the sharing candidate (p,Qp). The position of

a query q in the list Qp corresponds to the identifier of q. Thus,

we can conclude whether two candidates are in conflict in

linear time in the maximal number of queries |Qp| containing

a sharable pattern p, i.e., O(|Qp|).
Complexity Analysis. The time complexity is determined

by the number of sharable patterns |H|, the number of sharing

candidates |V |, and the maximal number of queries |Qp| con-

taining a pattern. In total, O(|H||V ||Qp|). The space complex-

ity corresponds to the size of the graph, i.e., Θ(|V ||Qp|+|E|).

V. SHARING CANDIDATE PRUNING

Since the search space for an optimal plan is exponential in

the number of candidates (Section VI), we prune two classes

of candidates from a SHARON graph. One, conflict-ridden
candidates are guaranteed not to be in the optimal plan because

their benefit values are too low to counterbalance the loss

of benefit from the sharing opportunities they exclude. Two,

conflict-free candidates are guaranteed to be in the optimal

plan since they do not prevent any other sharing opportunities.

Conflict-Ridden Candidates. We now map our MESA

problem to the problem of finding a Maximum Weight In-

dependent Set (MWIS) in a graph, which is known to be NP-

hard [17]. The greedy algorithm GWMIN [14] for MWIS does

not always return a high-quality plan as confirmed by our ex-

periments in Section VIII-C. However, its guaranteed minimal

weight can be used to prune conflict-ridden candidates.

Definition 11: (Maximum Weight Independent Set) Let

G = (V,E) be a graph with a set of weighted vertices V and

a set of edges E. For a set of vertices V ′ ⊆ V , we denote

the sum of the weights of the vertices in V ′ as Weight(V ′).
IS ⊆ V is an independent set of G if for any vertices vi, vj ∈
IS , (vi, vj) /∈ E holds. Let SIS be the set of all independent

sets of G. IS ∈ SIS is a maximum weight independent set of

G if �IS ′ ∈ SIS with Weight(IS ′) > Weight(IS ).
Lemma 1: Let Q be a query workload, G be the SHARON

graph for Q, and Popt be an optimal sharing plan for Q. Then,

Popt is an MWIS of G.

Proof: By Definitions 7 and 9, Popt is valid, i.e., contains

no conflicting sharing candidates. By Definition 10, no vertices

in Popt are connected by an edge in G. By Definition 11,

Popt is an independent set of G. By Definition 9, Popt has

the maximum score among all valid plans. By Definition 10,

Popt has the maximum weight among all independent sets of

G. By Definition 11, Popt is an MWIS of G.

GWMIN returns an independent set IS with weight:

Weight(IS ) ≥
∑
u∈V

weight(u)

degree(u) + 1
(10)

To safely prune a conflict-ridden candidate v, we define the

maximal score of a plan containing v, denoted Scoremax (v).
In best case, a plan containing v includes all other candidates

that are not in conflict with v. Thus, Scoremax (v) corresponds

to the summation of benefit values of all sharing candidates

that are not in conflict with v.

Definition 12: (Maximal Score of a Plan Containing a
Sharing Candidate) Let v ∈ V be a sharing candidate in a

SHARON graph G = (V,E) and N (v) ⊆ V be the set of

candidates that are in conflict with v. The maximal score of a
sharing plan containing v is defined as follows:

Scoremax (v) =
∑

u∈V \N (v)

BValue(u) (11)

Lemma 2: For a valid sharing plan P and a sharing candi-

date v ∈ P , Score(P) ≤ Scoremax (v) holds.

Proof: Let G = (V,E) be the SHARON graph such that

742



P ⊆ V is an independent set of G and v ∈ P . By Definition 7,

P contains no conflicting candidates. By Definition 10, all

vertices in N (v) are in conflict with v and thus are not in

P . Since P may need to remove additional vertices to avoid

other conflicts, P ⊆ V \N (v). By Definition 12, Scoremax (v)
is the sum of BValues of all candidates in V \ N (v). Since

all BValues of vertices in V are positive (Section III-D), P ⊆
V \ N (v) implies Score(P) ≤ Scoremax (v).

Definition 13: (Conflict-Ridden Sharing Candidate) Let

G = (V,E) be a SHARON graph. A sharing candidate v ∈
V is conflict-ridden if the maximal score of a sharing plan

containing v is lower than the guaranteed weight of GWMIN.

Scoremax (v) <
∑
u∈V

BValue(u)

degree(u) + 1
(12)

Conflict-Ridden Candidate Pruning. All conflict-ridden

candidates are pruned from the SHARON graph without sacri-

ficing the optimality of the resulting sharing plan.

Example 7: The guaranteed weight on the graph in Fig-

ure 4 is 25
6 + 9

4 + 12
5 + 15

4 + 20
5 + 8

2 + 18
1 ≈ 38.57.

Since Scoremax (p3, {q3, q4}) = BValue(p3, {q3, q4}) +
BValue(p6, {q1, q5}) + BValue(p7, {q6, q7}) = 38 < 38.57,

an optimal sharing plan cannot contain (p3, {q3, q4}). Thus,

this candidate and its conflicts can be pruned.

Conflict-Free Candidates do not exclude any other sharing

opportunities and increment the score of a plan by their benefit

values. Such candidates can be directly added to an optimal

plan and removed from further analysis.

Definition 14: (Conflict-Free Sharing Candidate) A shar-

ing candidate v ∈ V in a SHARON graph G = (V,E) is

conflict-free if � ∃u ∈ V with (v, u) ∈ E.

Example 8: The conflict-free candidate (p7, {q6, q7}) in

Figure 4 increments the score of a plan by its benefit 18.

SHARON Graph Reduction Algorithm [16] consumes a

SHARON graph G and the guaranteed weight of GWMIN. It

removes all conflict-ridden or conflict-free candidates from the

graph G. The algorithm returns the reduced graph and the set

of conflict-free candidates.

Example 9: Figure 8 depicts the search space for an optimal

plan for our running example. Since the conflict-ridden candi-

date (p3, {q3, q4}) is pruned (Example 7), while the conflict-

free candidate (p7, {q6, q7}) is added to the optimal plan

(Example 8), the search space is reduced by 27 − 25 = 96
plans. This reduced space is indicated by a solid frame in

Figure 8. It corresponds to 75.59% of the search space.

VI. SHARING PLAN FINDER

Based on the reduced SHARON graph, we now propose the

optimal sharing plan finder. In addition to the non-beneficial

and conflict-ridden candidate pruning principles, we define

invalid branch pruning. It cuts off those branches of the search

space that contain only invalid plans early on.

Search Space for an Optimal Sharing Plan. The parent-

child relationships between sharing plans are defined next.

Definition 15: (Parent-Child Relationship between
Sharing Plans) Let P and P ′ be sharing plans. If P ⊂ P ′,

then P is an ancestor of P ′ (P ′ is a descendant of P). If

|P| = |P ′|−1, then P is a parent of P ′ (P ′ is a child of P).

The search space has a lattice shape (Figure 8). The plans

in Level 1 correspond to the vertices in Figure 4. Level s
contains sharing plans of size s. The size of the search space
is exponential in the number of candidates, denoted |V |. It is

computed as the sum of the number of plans at each level:

|V |∑
s=0

(|V |
s

)
= 2|V | (13)

Lemma 3: Score(P ′) > Score(P) if P is a parent of P ′.
Proof: By Definition 15, P ⊂ P ′ and |P| = |P ′|−1. Let

P ′ \ P = (p,Qp). By Definition 10, only a candidate (p,Qp)
with BValue(p,Qp) > 0 is included into a SHARON graph.

Thus, (p,Qp) increases the score of P ′ compared to P .

A naive plan finder considers all combinations of candidates

and keeps track of a valid plan with the maximal score seen so

far. However, this solution constructs many invalid plans that

are subsequently discarded. To avoid such exhaustive search,

we prove the following properties of the search space.

Lemma 4: All descendants of an invalid plan are invalid.

Proof: Let P be an invalid sharing plan and Pd be its

descendant. By Definition 15, P ⊂ Pd. Thus, Pd “inherits”

all sharing conflicts from P which makes Pd invalid.

Invalid Branch Pruning. Invalid plans of size two corre-

spond to edges of a SHARON graph (Figures 4 and 8). Thus, all

descendants of invalid plans of size two can be safely pruned.

Our plan finder cuts off invalid branches at their roots.

Example 10: In Figure 8, only 7.87% of the search space

is valid. It consists of 10 plans. This valid space is traversed

to find the optimal plan {(p2, {q3, q4}); (p4, {q2, q4}); (p6,
{q1, q5}); (p7, {q6, q7})} highlighted by a darker background.

In Figure 8, 16.54% of the search space is invalid. The

invalid space consists of 21 plans = 25 not reduced plans – 10

valid plans – 1 empty plan. The invalid space is indicated by

the dashed frame. It is pruned by our plan finder.

Valid Search Space Traversal. A plan of size one is valid

by Definition 7. A plan of size two {v1, v2} is valid if there

is no edge (v1, v2) in the SHARON graph. Validity of a larger

plan is determined as described next.

Lemma 5: A sharing plan P , |P| > 2, is valid if and only

if all its parents are valid.

Proof: “⇒” The proof follows directly from Lemma 4.

“⇐” Let P contain a sharing conflict, say, between candi-

dates v and u. Then there exists a parent Pp of P that contains

v and u. Hence, Pp is invalid.

By Definition 15, a plan of size s has s parents. Instead of

accessing all parent plans to generate one new valid plan, we

prove that only two parents and one ancestor of size two must

be valid to guarantee validity of a sharing plan (similarly to

Apriori candidate generation [18]).

Lemma 6: Let G = (V,E) be a SHARON graph, P1 and

P2 be valid parents of P, |P| > 2. For two candidates v1 =
P1 \ P2 and v2 = P2 \ P1, if (v1, v2) �∈ E, then P is valid.

Proof: Assume all the above conditions hold but P is

743



Fig. 8: Search space of the sharing plan finder algorithm

invalid. Then P contains at least one pair of conflicting

candidates. By Definition 15, P = P1 ∪ P2 and P has one

additional candidate compared to P1 (or P2). Since P1 and P2

are valid, there can be only one pair of conflicting candidates

v1 and v2 in P such that v1 = P1 \ P2 and v2 = P2 \ P1. By

Definition 10, (v1, v2) ∈ E which is a contradiction.

Fig. 9:
SHARON

graph Fig. 10: Generation of a new valid sharing plan

Example 11: Figure 10 shows a portion of a search space

with valid plans P1–P6 of size four. P7 is the only valid plan

of size five. It is generated as follows. (1) We identify two

plans of size four that start with the same three candidates,

e.g., P1 and P2 start with {v1, v2, v3}. (2) We compute their

symmetric difference P1ΔP2 = {v4, v5}. (3) Since there is

no edge (v4, v5) in Figure 9, P7 is valid. There is no need to

check the other three parents of P7. In contrast, P8 is invalid

since v5 and v6 are in conflict.

Sharing Plan Finder Algorithm prunes invalid branches at

their roots, constructs only valid plans, and returns an optimal

plan. Its correctness follows from Lemmas 4–6 [16].

Data Structures. For each plan P , we store the list of

sharing candidates and the score of P . These candidates are

sorted alphabetically by their patterns within a plan because

sequential access of candidates in plans enables efficient

generation of new valid plans (Lemma 6, Example 11). Our

plan finder stores the best plan found so far and only one level

of the search space at a time. It discards a level immediately

after generating the next level.

Effectiveness of Sharing Plan Finder. Our experiments

in Section VIII-C demonstrate that our SHARON optimizer

finds an optimal plan in reasonable time due to three effective

pruning principles (i.e., non-beneficial, conflict-ridden, and

invalid candidates in Sections III-D, V, and VI). Only in the

following two extreme cases our solution may be ineffective:

1) Since the algorithm traverses the entire valid space, its

time complexity is exponential (Equation 13). If the search

space is too large, we can constrain the optimization time by l
seconds. If our SHARON optimizer does not return an optimal

plan within l seconds, we instead would run GWMIN [14]

with polynomial time complexity to find a sharing plan and

start our SHARON executor using this plan. Later, when the

optimal plan is produced by our SHARON optimizer, we can

replace the greedily found plan by the optimal plan.

2) The valid search space becomes small if many sharing

conflicts exist (Figure 8). In this case, only a few patterns can

be shared and a fairly low score of a sharing plan would be

achieved. In the worst case, no pattern can be shared, i.e.,

SHARON defaults to the Non-Shared Method (Section III-B).

Our optimizer finds such a trivial plan very quickly.

VII. DISCUSSION

In this section, we briefly describe the extensions of our

approach to relax the simplifying assumptions in Section II-A.

Sharing Conflict Resolution. Our analysis in Section IV

reveals that promising sharing opportunities might be excluded

due to sharing conflicts. Generally, the more queries share a

pattern the higher the probability of sharing conflicts becomes

(Definition 6). We now open up additional sharing opportuni-

ties by resolving sharing conflicts as follows.

Given a SHARON graph G = (V,E), we expand each

candidate v = (p,Qp) ∈ V with conflicts Ev ⊆ E to a set

of options Op. Each option v′ = (p,Q′p) ∈ Op resolves a

different subset of conflicts E′v ⊆ Ev of the original candidate

v with other candidates u ∈ V \Op. In contrast to the original

candidate v, an option v′ considers sharing the pattern p by a

subset of queries containing p, i.e., Q′p ⊆ Qp, |Q′p| > 1.

Example 12: In Figure 4, (p1, {q1, q2, q3, q4}) can be ex-

panded to a set of options. The option (p1, {q1, q3}) is in

conflict neither with (p4, {q2, q4}) nor with (p5, {q2, q4}).
Thus, they could belong to the same plan which may have

a higher score than a plan containing (p1, {q1, q2, q3, q4}).
The sharing conflict resolution algorithm [16] may substan-

tially expand the graph and thus increase the complexity of its

analytics. However, our SHARON approach still applies to the

expanded graph, namely, it is reduced (Section V) and serves

as input to our sharing plan finder (Section VI).

Different Grouping, Windows, and Predicates. Leverag-

ing existing techniques, our SHARON approach can share event

sequence aggregation among queries with different grouping,

windows, and predicates. Grouping partitions the stream into

sub-streams by the values of grouping attributes [9], [19].

Windows and predicates further partition these sub-streams

into disjoint segments and share the intermediate aggregates

per segment to compute the final results for each query [19],

[20], [21], [22]. These refinement strategies might not always

be effective, because of a large number of small segments

and the overhead of their computation. However, these are

744



orthogonal problems. Our SHARON approach can be applied

within each segment to tackle different query patterns.

Multiple Occurrences of an Event Type in a Pattern.

If an event type E occurs k times in a pattern, an event of

type E updates the counts of k prefix patterns that end at

E (Section III). Then, the time complexity of both the Non-

Shared and the Shared methods increases by the multiplicative

factor k (Equations 2, 4, and 7). Our SHARON optimizer is

not affected by this extension.

Dynamic Workloads. In dynamic environments, new

queries may be added or existing queries may be removed.

Even if the queries remain the same, the workload may still

vary due to event rate fluctuations. Thus, a chosen plan may

become sub-optimal. In this case, our SHARON approach

leverages runtime statistics techniques [23] to detect such

fluctuations and to trigger the SHARON optimizer to produce

a new optimal plan based on the new workload. Dynamic plan

migration techniques [20], [24] can be employed to migrate

from the old to the new sharing plan and ensure that no results

are lost or corrupted for stateful operators such as aggregation.

VIII. PERFORMANCE EVALUATION

A. Experimental Setup

Infrastructure. We have implemented our SHARON ap-

proach in Java with JRE 1.7.0 25 running on Ubuntu 14.04

with 16-core 3.4GHz CPU and 128GB of RAM. We execute

each experiment three times and report the average here.

Data Sets. We evaluate the performance of our SHARON

approach using the following data sets.

• TX: New York City Taxi and Uber Real Data Set. We use

the real data set [4] (330GB) containing 1.3 billion taxi and

Uber trips in New York City in 2014–2015. Each event carries

pick-up and drop-off locations and time stamps in seconds,

number of passengers, price, and payment method.

• LR: Linear Road Benchmark Data Set. We use the traffic

simulator of the Linear Road benchmark [12] for streaming

systems to generate a stream of position reports from cars for

3 hours. Each position report carries a time stamp in seconds,

a car identifier, its location and speed. Event rate gradually

increases from few dozens to 4k events per second.

• EC: E-Commerce Synthetic Data Set. Our stream gen-

erator creates sequences of items bought together for 3 hours.

Each event carries a time stamp in seconds, item and customer

identifiers. We consider 50 items and 20 users. The values

of item and customer identifiers of an event are randomly

generated. The stream rate is 3k events per second.

We ran each experiment on the above three data sets. Due

to space limitations, similar charts are not shown here.

Event Queries. We evaluate a workload similar to q1–q7
in Section I against the taxi and Linear Road data sets and a

workload similar to q8–q11 against the e-commerce data set.

Based on our cost model (Section III), we vary the major cost

factors, namely, number of queries, the length of their patterns,

and the number of events per window. Unless stated otherwise,

we evaluate 20 queries. The default length of their patterns is

10. The default number of events per window is 200k.

Methodology. We run two sets of experiments.

1) Sharon Executor vs. State-of-the-Art Approaches (Sec-

tion VIII-B). We demonstrate the effectiveness of our SHARON

executor (Section III) by comparing it to the state-of-the-art

techniques A-Seq [9], SPASS [10], and Flink [6] covering

the spectrum of approaches to event sequence aggregation

(Figure 3). While Section IX is devoted to a detailed discussion

of these approaches, we briefly sketch their main ideas below.

• A-Seq [9] avoids sequence construction by incrementally

maintaining a count for each prefix of a pattern. However, it

has no optimizer to determine which queries should share the

aggregation of which patterns. By default, it computes each

query independently from other queries and thus suffers from

repeated computations (Section III-B).

• SPASS [10] defines shared event sequence construction.

Their aggregation is computed afterwards and is not shared.

Thus, SPASS is a two-step and only partially shared approach.

• Flink [6] is a popular open-source streaming system

that supports event pattern matching and aggregation. We

express our queries using Flink operators. Flink constructs

all event sequences prior their aggregation. It does not share

computations among different queries.

To achieve a fair comparison, we have implemented A-Seq

and SPASS on top of our platform. We execute Flink on the

same hardware as our platform.

2) Sharon Optimizer (Section VIII-C). We study the ef-

ficiency of our SHARON optimizer (Sections IV–VII) by

comparing it to the greedy algorithm GWMIN [14] and to

exhaustive search. We also compare the quality of a greedily

chosen plan returned by GWMIN to an optimal plan returned

by our SHARON optimizer and the exhaustive search.

Metrics. We measure the following metrics common for

streaming systems. Latency is measured in milliseconds as the

average time difference between the time point of aggregate

output and the arrival time of the latest event that contributed

to this result. Throughput corresponds to the average number

of events processed by all queries per second. Peak memory is

measured in bytes. For event sequence aggregation algorithms,

it is the maximal memory for storing aggregates, events,

and event sequences. For the optimizer algorithms, the peak

memory is the maximal memory for storing the SHARON

graph and the sharing plans during space traversal.

B. Sharon Executor versus State-of-the-Art Approaches

(a) Latency (b) Throughput

Fig. 11: Two-step versus online approaches (Linear Road data set)

Two-step Approaches. In Figure 11, we vary the number

of events per window and measure latency and throughput of

745



(a) Latency (TX) (b) Latency (LR) (c) Latency (EC) (d) Memory (LR)

(e) Throughput (TX) (f) Throughput (LR) (g) Throughput (EC) (h) Memory (EC)

Fig. 12: Online approaches (Taxi (TX), Linear Road (LR), and e-commerce (EC) data sets)

the event sequence aggregation approaches using the Linear

Road benchmark data set. Latency of the two-step approaches

(SPASS and Flink) increases exponentially, while throughput

decreases exponentially in the number of events.
SPASS achieves 6–fold speed-up compared to Flink for

6k events per window because SPASS shares event sequence

construction. Due to event sequence construction overhead,

SPASS does not terminate when the number of events exceeds

7k. These measurements are not shown in Figure 11.
Flink not only constructs all event sequences but also

computes each query independently from other queries in the

workload. Flink fails for more than 6k events per window.
The event sequence construction step has polynomial time

complexity in the number of events [3], [9] and may jeopardize

real-time responsiveness for high-rate event streams (Fig-

ure 11). Thus, these two-step approaches cannot be effective

for time-critical processing of high-rate streams.
Online Approaches. The online approaches (A-Seq and

SHARON) perform similarly for such low-rate streams. They

achieve five orders of magnitude speed-up compared to SPASS

for 7k events per window because they aggregate event se-

quences without first constructing these sequences.
Figure 12 evaluates the online approaches against high-

rate streams. We vary the number of events per window, the

number of queries, and the length of their patterns and measure

latency, throughput and memory of the online approaches.
The Sharon Executor shares event sequences aggregation

among all queries in the workload according to an optimal

sharing plan that is computed based on an expanded SHARON

graph (Section VII). The latency of SHARON and A-Seq grows

linearly in the number of queries. SHARON achieves from

5–fold to 18–fold speed-up compared to A-Seq when the

number of queries increases from 20 to 120. Indeed, the more

queries share their aggregation results, the fewer aggregates

are maintained and the more events can be processed by the

system (Figures 12(b) and 12(f)). SHARON requires up to two

orders of magnitude less memory than A-Seq for 120 queries

(Figure 12(d)). For low parameter values, SHARON defaults to

A-Seq due to limited sharing opportunities.

While SHARON processes each event by each shared pattern

exactly once, each event can provoke repeated computations

in A-Seq. Thus, the gain of SHARON grows linearly in the

number of events per window. SHARON wins from 5–fold

to 7–fold with respect to latency and throughput when the

number of events increases from 200k to 1200k (Figures 12(a)

and 12(e)). Similarly, the speed-up of SHARON grows linearly

from 4–fold to 6–fold with the increasing length of patterns

(Figure 12(c)). SHARON requires 20-fold less memory than

A-Seq if the pattern length is 30 (Figure 12(h)).

Based on the experimental results in Figures 11 and 12, we

conclude that the latency, throughput and memory utilization

of event sequence aggregation can be considerably reduced

by the seamless integration of shared and online optimization

techniques as proposed by our SHARON approach to enable

real-time in-memory event sequence aggregation.

C. Sharon Optimizer

In Figure 13 we compare three optimizer solutions, while

varying the number of queries. Each bar is segmented into

phases as described below.

The Greedy Optimizer consists of the following two phases:

SHARON graph construction (Section IV) and the GWMIN

plan finder. In the worst case, both phases have polynomial

latency and linear memory. However, our experiments show

that on average more time and space is required to construct

the SHARON graph than to run GWMIN. For 70 queries, 90%

of the time is spent constructing the graph.

The Exhaustive Optimizer consists of three phases, namely,

SHARON graph construction, graph expansion (Section VII),

and an exhaustive search that traverses the entire search space

746



(a) Latency (b) Memory

Fig. 13: SHARON optimizer (SO) versus greedy optimizer (GO) and exhaustive optimizer (EO)
(E-commerce query workload) Fig. 14: Sharing plan quality (Taxi

data set)

to find an optimal plan. Thus, its latency and memory costs

grow exponentially in the number of queries. The exhaustive

optimizer fails to terminate for more than 20 queries. For 20

queries, its latency is 4 orders of magnitude higher than the

latency of the greedy optimizer.

The Sharon Optimizer consists of four phases, namely,

SHARON graph construction, graph expansion, graph reduc-

tion, and the sharing plan finder that returns an optimal plan

(Sections IV–VII). While its time and space complexity is

exponential in the worst case (Equation 13), its latency and

memory usage are reduced by our pruning principles compared

to the exhaustive optimizer. On average, 36% of the sharing

candidates are pruned from the expanded SHARON graph,

which is 99% of the plan finder search space. For 20 queries,

SHARON outperforms the exhaustive optimizer by three orders

of magnitude with respect to latency and by two orders of

magnitude regarding memory usage.

Our SHARON plan finder traverses the entire valid space to

find an optimal plan. In contrast, GWMIN greedily selects one

candidate with the highest benefit and eliminates its adjacent

candidates from further consideration. For example, for 70

queries, the latency of SHARON is three orders of magnitude

higher, while its memory usage is two orders of magnitude

larger compared to the greedy optimizer.

Sharing Plan Quality. The greedy optimizer tends to return

a sub-optimal sharing plan for two reasons. One, it greedily

selects a candidate v with the maximal benefit in each step.

By deciding to share v it excludes all candidates adjacent

to v even though they may be more beneficial to share than

v alone. Two, the greedy optimizer does not resolve sharing

conflicts (Section VII). However, the sharing opportunities in

the original SHARON graph may be rather limited (Figure 4).

In Figure 14, we vary the number of queries and compare

the latency and memory consumption of our SHARON executor

when guided by a greedily chosen plan versus an optimal

plan. We run these experiments on the Taxi real data set. The

latency of the SHARON executor is reduced 2–fold and its

memory consumption decreases 3–fold when 180 queries are

processed according to an optimal plan compared to a greedily

chosen plan. Thus, an optimal plan ensures real-time, light-

weight event sequence aggregation.

IX. RELATED WORK

Complex Event Processing (CEP) approaches such as

SASE [1], [3], Cayuga [7], and ZStream [8] support both event

aggregation and event sequence detection over streams. SASE

and Cayuga employ a Finite State Automaton (FSA)-based

query execution paradigm, meaning that each event query is

translated into an FSA. Each run of an FSA corresponds to

a query match. In contrast, ZStream translates an event query

into an operator tree that is optimized based on rewrite rules.

However, these approaches evaluate each query independently
from other queries in the workload – causing both repeated

computations and replicated storage in multi-query settings.

Furthermore, they do not optimize event sequence aggregation

queries – which is the focus of our work. Thus, they require

event sequence construction prior to their aggregation. Since

the number of event sequences is polynomial in the number of

events per window [3], [9], this two-step approach introduces

long delays for high-rate streams (Section VIII).

In contrast, A-Seq [9] defines online event sequence aggre-

gation that eliminates event sequence construction. It incre-

mentally maintains an aggregate for each pattern and discards

an event once it updated the aggregates. We leverage this idea

in our executor (Section III). However, A-Seq has no optimizer

to decide which patterns should be shared by which queries.

Thus, A-Seq does not share event sequence aggregation.

GRETA [13] extends A-Seq by nested Kleene patterns and

expressive predicates at the cost of storing of all matched

events. Similarly to A-Seq, GRETA optimizes single queries.

CEP Multi-Query Optimization (MQO) approaches such as

SPASS [10], E-Cube [11], and RUMOR [25] propose event

sequence sharing techniques. SPASS exploits event correlation

in an event sequence to determine the benefit of shared event

sequence construction. E-Cube defines a concept and a pattern

hierarchy of event sequence queries and develops both top-

747



down and bottom-up processing of patterns based on the

results of other patterns in the hierarchy. RUMOR proposes

a rule-based MQO framework for traditional RDBMS and

stream processing systems. It defines a set of rules to merge

NFAs representing different event queries. However, no opti-

mization techniques for online aggregation of event sequences

are proposed by the approaches above. They too construct

all event sequences prior to their aggregation. Event sequence

construction degrades system performance.

Data Streaming. Streaming approaches typically support

incremental aggregation [19], [20], [21], [22], [26], [27],

[28], [29], [30]. Some of them are shared. However, they

solve an orthogonal problem. Namely, they enable shared

aggregation given different windows, predicates, and group-by

clauses [19], [20], [21], [22]. Thus, they could be plugged into

our approach as described in Section VII. However, in contrast

to SHARON, many of them aggregate only raw input events for
single-stream queries [19], [22], [27]. Others evaluate simple

Select-Project-Join queries with window semantics over data

streams [20]. They do not support CEP-specific operators such

as event sequence that treat the order of events as a first-class

citizen. Typically, they require the construction of join results
prior to their aggregation.

Multi-Query Optimization techniques include materialized

views [31] and common sub-expression sharing [32], [33] in

relational databases. However, these approaches do not have

the temporal aspect prevalent for CEP queries. Thus, they

neither focus on event sequence computation nor their aggre-

gation. Furthermore, they assume that the data is statically

stored on disk prior to processing. They neither target in-

memory execution nor real-time responsiveness.

X. CONCLUSIONS AND FUTURE WORK

Our SHARON approach is the first to enable shared online
event sequence aggregation. The SHARON optimizer encodes

sharing candidates, their benefits and conflicts among them

into the SHARON graph. Based on the graph, we define effec-

tive candidate pruning principles to reduce the search space

of sharing plans. Our sharing plan finder returns an optimal

plan to guide the executor at runtime. SHARON achieves an

18–fold speed-up compared to state-of-the-art approaches.

In the future, we plan to further investigate event sequence

aggregation sharing for dynamic workloads to produce a new

optimal sharing plan on the fly and migrate from the old

to the new sharing plan with minimal overhead. Another

interesting direction for future work is to leverage modern

distributed multi-core clusters of machines to further improve

the scalability of shared online event sequence aggregation.

REFERENCES

[1] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman, “Efficient pattern
matching over event streams,” in SIGMOD, 2008, pp. 147–160.

[2] E. Wu, Y. Diao, and S. Rizvi, “High-performance Complex Event
Processing over streams,” in SIGMOD, 2006, pp. 407–418.

[3] H. Zhang, Y. Diao, and N. Immerman, “On complexity and optimization
of expensive queries in CEP,” in SIGMOD, 2014, pp. 217–228.

[4] “Unified New York City Taxi and Uber data,” https://github.com/
toddwschneider/nyc-taxi-data.

[5] “Uber Releases Hourly Ride Numbers In New York City
To Fight De Blasio,” https://techcrunch.com/2015/07/22/
uber-releases-hourly-ride-numbers-in-new-york-city-to-fight-de-blasio/.

[6] “Apache Flink,” https://flink.apache.org/.
[7] A. Demers, J. Gehrke, B. Panda, M. Riedewald, V. Sharma, and

W. White, “Cayuga: A general purpose event monitoring system,” in
CIDR, 2007, pp. 412–422.

[8] Y. Mei and S. Madden, “ZStream: A cost-based processor for adaptively
detecting composite events,” in SIGMOD, 2009, pp. 193–206.

[9] Y. Qi, L. Cao, M. Ray, and E. A. Rundensteiner, “Complex event
analytics: Online aggregation of stream sequence patters,” in SIGMOD,
2014, pp. 229–240.

[10] M. Ray, C. Lei, and E. A. Rundensteiner, “Scalable pattern sharing on
event streams,” in SIGMOD, 2016, pp. 495–510.

[11] M. Liu, E. Rundensteiner, K. Greenfield, C. Gupta, S. Wang, I. Ari, and
A. Mehta, “E-Cube: Multi-dimensional event sequence analysis using
hierarchical pattern query sharing,” in SIGMOD, 2011, pp. 889–900.

[12] A. Arasu, M. Cherniack, E. Galvez, D. Maier, A. S. Maskey, E. Ryvkina,
M. Stonebraker, and R. Tibbetts, “Linear road: A stream data manage-
ment benchmark,” in VLDB, 2004, pp. 480–491.

[13] O. Poppe, C. Lei, E. A. Rundensteiner, and D. Maier, “GRETA: Graph-
based Real-time Event Trend Aggregation,” in VLDB, 2018, pp. 80–92.

[14] S. Sakai, M. Togasaki, and K. Yamazaki, “A note on greedy algorithms
for the maximum weighted independent set problem,” Discrete Appl.
Math., vol. 126, no. 2-3, pp. 313–322, 2003.

[15] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venka-
trao, F. Pellow, and H. Pirahesh, “Data Cube: A Relational Aggregation
Operator Generalizing Group-By, Cross-Tab, and Sub-Totals,” Data Min.
Knowl. Discov., vol. 1, no. 1, pp. 29–53, 1997.

[16] O. Poppe, A. Rozet, C. Lei, E. A. Rundensteiner, and D. Maier,
“Sharon: Shared Online Event Sequence Aggregation,” http://users.wpi.
edu/∼opoppe/papers/Sharon-full.pdf, 2017, technical report.

[17] R. Karp, “Reducibility among combinatorial problems,” in Complexity
of Computer Computations. Plenum Press, 1972, pp. 85–103.

[18] R. Agrawal and R. Srikant, “Fast algorithms for mining association
rules,” in VLDB, 1994, pp. 487–499.

[19] S. Guirguis, M. A. Sharaf, P. K. Chrysanthis, and A. Labrinidis, “Three-
level processing of multiple aggregate continuous queries,” in ICDE,
2012, pp. 929–940.

[20] S. Krishnamurthy, C. Wu, and M. J. Franklin, “On-the-fly sharing for
streamed aggregation,” in SIGMOD, 2006, pp. 623–634.

[21] A. Arasu and J. Widom, “Resource sharing in continuous sliding-
window aggregates,” in VLDB, 2004, pp. 336–347.

[22] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker, “No pane,
no gain: Efficient evaluation of sliding window aggregates over data
streams,” in SIGMOD, 2005, pp. 39–44.

[23] C. Lei and E. A. Rundensteiner, “Robust distributed query processing
for streaming data,” ACM Trans. Database Syst., vol. 39, no. 2, pp.
17:1–17:45, 2014.

[24] Y. Zhu, E. A. Rundensteiner, and G. T. Heineman, “Dynamic plan
migration for continuous queries over data streams,” in SIGMOD, 2004,
pp. 431–442.

[25] M. Hong, M. Riedewald, C. Koch, J. Gehrke, and A. Demers, “Rule-
based multi-query optimization,” in EDBT, 2009, pp. 120–131.

[26] T. M. Ghanem, M. A. Hammad, M. F. Mokbel, W. G. Aref, and A. K.
Elmagarmid, “Incremental evaluation of sliding-window queries over
data streams,” IEEE Trans. on Knowl. and Data Eng., vol. 19, no. 1,
pp. 57–72, Jan. 2007.

[27] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. Tucker, “Semantics
and evaluation techniques for window aggregates in data streams,” in
SIGMOD, 2005, pp. 311–322.

[28] K. Tangwongsan, M. Hirzel, S. Schneider, and K.-L. Wu, “General
incremental sliding-window aggregation,” in VLDB, 2015, pp. 702–713.

[29] R. Zhang, N. Koudas, B. C. Ooi, and D. Srivastava, “Multiple aggrega-
tions over data streams,” in SIGMOD, 2005, pp. 299–310.

[30] R. Zhang, N. Koudas, B. C. Ooi, D. Srivastava, and P. Zhou, “Streaming
multiple aggregations using phantoms,” in VLDB, 2010, pp. 557–583.

[31] S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and K. Shim, “Opti-
mizing queries with materialized views,” in ICDE, 1995, pp. 190 – 200.

[32] U. S. Chakravarthy and J. Minker, “Multiple query processing in
deductive databases using query graphs.” in VLDB, 1986, pp. 384–391.

[33] G. Giannikis, P. Unterbrunner, J. Meyer, G. Alonso, D. Fauser, and
D. Kossmann, “Crescando,” in SIGMOD, 2010, pp. 1227–1230.

748


