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CEP engine

Complex Event Processing

Primitive events Complex events

Input: High-rate, 
potentially unbounded 
event stream

Output: Reliable summarized 
insights about the current 
situation in real time
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Motivating Example: 
Traffic Analytics

Event 
Sequence

Aggregation 
Queries

Event 
Stream

!": RETURN COUNT(*) 
PATTERN OakSt, MainSt, StateSt 
WHERE [vehicle] WITHIN 10 min SLIDE 1 min

!$: PATTERN OakSt, MainSt, WestSt
!%: PATTERN LindenSt, ParkAve, OakSt, MainSt
!&: PATTERN ParkAve, OakSt, MainSt, WestSt

Position report event
• Vehicle id
• Location
• Time stamp
• Speed
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Problem
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The aggregation of which 
sub-patterns should be 

shared to process the 
workload with minimal 

latency?

Event 
Sequence

Aggregation 
Queries

Event 
Stream
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State-of-the-Art
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Online yet shared event sequence aggregation: 

Trade-off between sharing and not sharing:
Sharing introduces overhead to combine intermediate aggregates

Intractable sharing plan search space:
Exponential in the number of sharing candidates

Challenges
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Sharing requires 
sequence 

construction

Online skips 
sequence 

construction
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Sharon Approach
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Non-shared:
• Maintains a count for each prefix of each query pattern
• Events are discarded
• Re-computation overhead

Non-Shared Online Aggregation
8

Motivation Optimizer Evaluation Conclusion

Pattern from !": OakSt, MainSt, StateSt 

Counts
Event stream

o1 m2 o3 m4 s5
count(OakSt) 1 2
count(OakSt,	MainSt) 1 3
count(OakSt,	MainSt,	StateSt) 3
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Shared:
• Maintains a count for each prefix of each sub-pattern
• Events are still discarded
• Count combination overhead

Shared Online Aggregation
9
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Pattern from !": OakSt, MainSt, StateSt 

Counts
Event stream

o1 m2 o3 m4 s5
count(OakSt) 1 2
count(OakSt,	MainSt) 1 3
count(StateSt) 1
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Sharing Candidates
10
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Pattern from !": OakSt, MainSt, StateSt 

Pattern from !$: OakSt, MainSt, WestSt

Pattern from !%: LindenSt, ParkAve, OakSt, MainSt

Pattern from !&: ParkAve, OakSt, MainSt, WestSt

Pattern: p1=(OakSt, MainSt)
Queries: q1,q2,q3,q4   Benefit: 25

Benefit = 
Cost of not sharing

- Cost of sharing
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Sharing Conflict
11
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Pattern from !": OakSt, MainSt, StateSt 

Pattern from !$: OakSt, MainSt, WestSt

Pattern from !%: LindenSt, ParkAve, OakSt, MainSt

Pattern from !&: ParkAve, OakSt, MainSt, WestSt

Pattern: p1=(OakSt, MainSt)
Queries: q1,q2,q3,q4   Benefit: 25

Pattern: p2=(ParkAve, OakSt)
Queries: q3,q4   Benefit: 25
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Sharing Conflict Modeling

Optimal sharing plan = Maximum Weight Independent Set
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Sharon Approach
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Sharing Candidate Pruning

Challenge: Finding the optimal sharing plan is exponential
in the number of vertices in the Sharon graph

Sharon graph reduction principles:
• Non-beneficial candidates
• Conflict-ridden candidates
• Conflict-free candidates

Motivation Optimizer Evaluation Conclusion

14



Worcester Polytechnic Institute

Sharing Candidate Pruning

Challenge: Finding the optimal sharing plan is exponential
in the number of vertices in the Sharon graph

Sharon graph reduction principles:
• Non-beneficial candidates
• Conflict-ridden candidates
• Conflict-free candidates

Motivation Optimizer Evaluation Conclusion

15



Worcester Polytechnic Institute

Sharing Candidate Pruning

Challenge: Finding the optimal sharing plan is exponential
in the number of vertices in the Sharon graph

Sharon graph reduction principles:
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Sharon Approach
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Sharing Plan Finder

Sharing Plan Selection Algorithm

Optimal sharing plan
(p2, {q3,q4}), (p4, {q2,q4}), (p6, {q1,q5}), (p7, {q6,q7}): 50
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Experimental Setup

Execution infrastructure: 

Java 7, 1 Linux machine with 16-core 

3.4 GHz CPU and 128GB of RAM

Data sets:

• TX: NYC taxi real data set [1]

Event sequences = Vehicle trajectories 

• LR: Linear road benchmark data set [2] 

Event sequences = Vehicle trajectories 

• EC: E-commerce synthetic data set

Event sequences = Items added

[1] Unified New York City Taxi and Uber data. https://github.com/toddwschneider/nyc-taxi-data
[2] A. Arasu, M. Cherniack, E. Galvez, D. Maier, A. S. Maskey, E. Ryvkina, M. Stonebraker, and R. 
Tibbetts. Linear road: A stream data management benchmark. In VLDB, pages 480-491, 2004.
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Sharon versus State-of-the-Art
Latency of two-
step approaches

Latency of online 
approaches

• The online approaches achieve 5 orders of magnitude 
speed-up compared to the two-step approaches

• Sharon achieves up to 18-fold speed-up compared to A-Seq

Linear Road data set Taxi real data set
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Conclusions

• Real-time processing of event sequence 
aggregation queries due to
─ Sharing of intermediate aggregates
─ Online aggregation

• Effective pruning principles reduce the 
search space of sharing plans

• Optimal plan guides the executor at runtime
• 18-fold speed-up compared to state-of-the-

art approaches

Motivation Optimizer Evaluation Conclusion
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Optimizer Algorithms

Phases GO: Greedy EO: Exhaustive SO: Sharon

Graph construction + + +

Graph expansion - + +

Graph reduction - - +

Sharing plan finder + + +

• Greedy selects vertices in the graph with maximal ratio 
of benefit to number of conflicts

• Exhaustive traverses the entire search space

• Sharon reduces the graph and excludes the invalid 
search space
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Sharing Plan Selection Algorithms

Optimizer algorithms Quality of 
sharing plan

• Sharon optimizer is 3 orders of magnitude faster than 
exhaustive search (20 queries) but 3 orders of magnitude 
slower than greedy (70 queries) 

• Executor latency is reduced 2-fold when processed with an 
optimal plan rather than a greedy plan (180 queries)

E-commerce data set Taxi real data set
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