

Sharon: Shared Online Event Sequence Aggregation

Olga Poppe, Allison Rozet, Chuan Lei, Elke A. Rundensteiner, and David Maier

April 18, 2018

Complex Event Processing

Primitive events

Complex events

Input: High-rate, potentially unbounded event stream

Output: Reliable summarized insights about the current situation in real time

Motivating Example: Traffic Analytics

Event
Sequence
Aggregation
Queries

q₁: RETURN COUNT(*)
PATTERN OakSt, MainSt, StateSt
WHERE [vehicle] WITHIN 10 min SLIDE 1 min

q₂: **PATTERN** OakSt, MainSt, WestSt

 q_3 : **PATTERN** LindenSt, ParkAve, OakSt, MainSt

q₄: **PATTERN** ParkAve, OakSt, MainSt, WestSt

Event Stream

Position report event

- Vehicle id
- Location
- Time stamp
- Speed

Problem

Event Sequence Aggregation Queries

Event Stream

The aggregation of which sub-patterns should be shared to process the workload with minimal latency?

State-of-the-Art

	Non-Shared	Shared		
_	Flink, SASE, Cayuga, ZStream	SPASS, ECube		
Two- step	1. Event sequence construction	1. Event sequence construction		
step	2. Event sequence aggregation	2. Event sequence aggregation		
Online	A-Seq, GRETA	Sharon		
	Event sequence aggregation	Event sequence aggregation		

Flink. https://flink.apache.org/

SASE. H. Zhang, Y. Diao, and N. Immerman. On complexity and optimization of expensive queries in Complex Event Processing. In SIGMOD, pages 217-228, 2014.

Cayuga. A. Demers, J. Gehrke, B. Panda, M. Riedewald, V. Sharma, and W. White. Cayuga: A general purpose event monitoring system. In CIDR, pages 412-422, 2007.

ZStream. Y. Mei and S. Madden. ZStream: A Cost-based Query Processor for Adaptively Detecting Composite Events. In SIGMOD, pages 193-206, 2009.

A-Seq. Y. Qi, L. Cao, M. Ray, and E. A. Rundensteiner. Complex event analytics: Online aggregation of stream sequence patterns. In SIGMOD, pages 229-240, 2014.

GRETA. O.Poppe, C. Lei, E. A. Rundensteiner, and D. Maier. GRETA: Graph-based Real-time Event Trend Aggregation. In VLDB, pages 80-92, 2018.

SPASS. M. Ray, C. Lei, and E. A. Rundensteiner. Scalable pattern sharing on event streams. In SIGMOD, pages 495-510, 2016.

ECube. M. Liu, E. A. Rundensteiner, et al. E-Cube: Multi-dimensional event sequence analysis using hierarchical pattern query sharing. In SIGMOD, pages 889-900, 2011.

Challenges

Online yet shared event sequence aggregation:

Sharing requires Online skips sequence $\Rightarrow \Leftarrow$ sequence construction

Trade-off between sharing and not sharing:

Sharing introduces overhead to combine intermediate aggregates

Intractable sharing plan search space:

Exponential in the number of sharing candidates

Sharon Approach

Non-Shared Online Aggregation

Pattern from q_1 : OakSt, MainSt, StateSt

Counts	Event stream				
Counts	o1	m2	о3	m4	s5
count(OakSt)	1		2		
count(OakSt, MainSt)		1		3	
count(OakSt, MainSt, StateSt)					3

Non-shared:

- Maintains a count for each prefix of each query pattern
- Events are discarded
- Re-computation overhead

Shared Online Aggregation

Pattern from q_1 : OakSt, MainSt, StateSt

Counts	Event stream				
Counts	o1	m2	о3	m4	s5
count(OakSt)	1		2		
count(OakSt, MainSt)		1		3	
count(StateSt)					1

Shared:

Maintains a count for each prefix of each **sub-pattern**

Conclusion

- Events are still discarded
- Count combination overhead

Sharing Candidates

```
Pattern from q_1: OakSt, MainSt, StateSt
```

```
Pattern from q_2: OakSt, MainSt, WestSt
```

Pattern from q_3 : LindenSt, ParkAve, OakSt, MainSt

Pattern from q_4 : ParkAve, OakSt, MainSt, WestSt

Pattern: p1=(OakSt, MainSt)

Queries: q1,q2,q3,q4 Benefit: 25

Benefit = Cost of not sharing

- Cost of sharing

Sharing Conflict

```
Pattern from q_1: OakSt, MainSt, StateSt
```

Pattern from q_2 : OakSt, MainSt, WestSt

Pattern from q_3 : LindenSt, ParkAve, OakSt, MainSt

Conclusion

Pattern from q_4 : ParkAve, OakSt, MainSt, WestSt

Pattern: p1=(OakSt, MainSt)

Queries: q1,q2,q3,q4 Benefit: 25

Pattern: p2=(ParkAve, OakSt)

Queries: q3,q4 **Benefit**: 25

Sharing Conflict Modeling

Optimal sharing plan = Maximum Weight Independent Set

Worcester Polytechnic Institute

Sharon Approach

Worcester Polytechnic Institute

Sharing Candidate Pruning

Challenge: Finding the optimal sharing plan is exponential in the number of vertices in the Sharon graph

Sharon graph reduction principles:

- Non-beneficial candidates
- Conflict-ridden candidates
- Conflict-free candidates

Sharing Candidate Pruning

Challenge: Finding the optimal sharing plan is exponential in the number of vertices in the Sharon graph

Sharon graph reduction principles:

- Non-beneficial candidates
- Conflict-ridden candidates
- Conflict-free candidates

Sharing Candidate Pruning

Challenge: Finding the optimal sharing plan is exponential in the number of vertices in the Sharon graph

Sharon graph reduction principles:

- Non-beneficial candidates
- Conflict-ridden candidates
- Conflict-free candidates

Sharon Approach

Worcester Polytechnic Institute

Sharing Plan Finder

Optimal sharing plan (p2, {q3,q4}), (p4, {q2,q4}), (p6, {q1,q5}), (p7, {q6,q7}): **50**

Sharing Plan Selection Algorithm

Worcester Polytechnic Institute

Experimental Setup

Execution infrastructure:

Java 7, 1 Linux machine with 16-core

3.4 GHz CPU and 128GB of RAM

Data sets:

- TX: NYC taxi real data set [1]
 Event sequences = Vehicle trajectories
- LR: Linear road benchmark data set [2]
 Event sequences = Vehicle trajectories
- **EC**: E-commerce synthetic data set Event sequences = Items added
- [1] Unified New York City Taxi and Uber data. https://github.com/toddwschneider/nyc-taxi-data [2] A. Arasu, M. Cherniack, E. Galvez, D. Maier, A. S. Maskey, E. Ryvkina, M. Stonebraker, and R. Tibbetts. Linear road: A stream data management benchmark. In VLDB, pages 480-491, 2004.

Sharon versus State-of-the-Art

Latency of twostep approaches

Latency of online approaches

- The online approaches achieve 5 orders of magnitude speed-up compared to the two-step approaches
- Sharon achieves up to 18-fold speed-up compared to A-Seq

Conclusions

- Real-time processing of event sequence aggregation queries due to
 - Sharing of intermediate aggregates
 - Online aggregation
- Effective pruning principles reduce the search space of sharing plans
- Optimal plan guides the executor at runtime
- 18-fold speed-up compared to state-of-theart approaches

Thank You

Supplementary Slides

Optimizer Algorithms

Phases	GO: Greedy	EO : Exhaustive	SO : Sharon
Graph construction	+	+	+
Graph expansion	-	+	+
Graph reduction	-	-	+
Sharing plan finder	+	+	+

- Greedy selects vertices in the graph with maximal ratio of benefit to number of conflicts
- Exhaustive traverses the entire search space
- Sharon reduces the graph and excludes the invalid search space

Sharing Plan Selection Algorithms

Optimizer algorithms

Quality of sharing plan

Taxi real data set

- Sharon optimizer is 3 orders of magnitude faster than exhaustive search (20 queries) but 3 orders of magnitude slower than greedy (70 queries)
- Executor latency is reduced 2-fold when processed with an optimal plan rather than a greedy plan (180 queries)