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Abstract—Enterprises are creating domain-specific knowledge
graphs by curating and integrating their business data from
multiple sources. Ontologies provide a semantic abstraction for
such knowledge graphs to describe their data in terms of the
entities involved and their relationships. There has been a lot
of effort to build systems that enable efficient querying over
knowledge graphs, represented as property graphs. However the
problem of schema optimization in the property graph setting has
been largely ignored. In this work, we show that graph schema
design has significant impact on query performance, and propose
two algorithms to generate an optimized property graph schema
from the domain ontology. To the best of our knowledge, we
are the first to present an ontology-driven approach for property
graph schema optimization. The rich semantic relationships in
an ontology contain a variety of opportunities to reduce edge
traversals and consequently improve the graph query perfor-
mance. Our experimental study with two real-world knowledge
graphs shows that our algorithms produce high-quality schemas,
achieving up to 2 orders of magnitude speed-up compared to
alternative schema designs.

I. INTRODUCTION

Domain-specific knowledge graphs are playing an increas-
ingly important role to derive business insights in many
enterprise applications such as customer engagement, fraud de-
tection, network management, etc. One distinct characteristic
of these enterprise knowledge graphs, compared to the open-
domain knowledge graphs like DBpedia [1] and Freebase [2],
is their deep domain specialization. The domain specialization
is typically captured by an ontology which provides a semantic
abstraction to describe the entities and their relationships of
the data in the knowledge graphs. A few widely used domain-
specific ontologies include Unified Medical Language System
(UMLS)1 and SNOMED Clinical Terms2 in the medical
domain, Financial Industry Business Ontology (FIBO)3 and
Financial Report Ontology (FRO)4 in the financial domain,
and many more in various other domains5. These ontologies
are often used to drive the creation of a knowledge graph
by ingesting and transforming raw data from multiple sources
into standard terminologies. The curated knowledge graphs
allow users to express their queries in standard vocabularies,

1https://www.nlm.nih.gov/research/umls/index.html
2http://www.snomed.org/
3https://spec.edmcouncil.org/fibo/
4http://www.xbrlsite.com/2015/fro/us-gaap/xbrl/Ontology/Overview.html
5https://lod-cloud.net/

which promotes more interoperable and effective enterprise
applications for specific domains [3].

There are two popular approaches to store and query
knowledge graphs: RDF data model and SPARQL query lan-
guage [4] or property graph model and graph query languages
such as Gremlin [5] and Cypher [6]. An important difference
between RDF and property graphs is that RDF regularizes
the graph representation as a set of triples, which means
that even literals are represented as graph vertices. Such
artificial vertices make it hard to express graph queries in a
natural way. The property graph model instead uses vertices
to represent entities and edges to represent the relationships
between them, with each specified using key-value properties
pairs [7]. For this reason, property graph systems such as
Neo4j6, JanusGraph7, Amazon Neptune8, and Db2 Graph [8]
are rapidly gaining popularity for graph storage and retrieval.
Many graph applications (e.g., community detection, centrality
analysis, and link prediction) heavily rely on the performance
of graph queries over the property graph systems. Although
many techniques have been proposed for optimizing query per-
formance, system scalability, and transaction support for these
systems [9]–[12], the problem of property graph schema [13]
optimization has been largely ignored, which is also critical
to graph query performance.

In this paper, we tackle the property graph schema optimiza-
tion problem for domain-specific knowledge graphs. Our goal
is to create an optimized schema9 using a given ontology, such
that the corresponding property graph can efficiently support
various types of graph queries (e.g., pattern matching, path
finding, or aggregation queries) with better query performance.
The raw data is loaded directly as a property graph that
conforms to the optimized schema. One straightforward way to
create a property graph schema from an ontology is to directly
map each ontology concept to a schema node, and to map
each ontology relationship to a schema edge, analogous to ER
diagram to relational schema mapping. However, we argue that
the graph query performance varies vastly for different prop-
erty graphs with the same data but corresponding to different
schemas, and the rich semantic information in the ontology

6Neo4j Graph Database - https://neo4j.com/
7JanusGraph - https://janusgraph.org/
8Amazon Neptune - https://aws.amazon.com/neptune/
9We use the terms property graph schema, graph schema, and schema

interchangeably.

924

2021 IEEE 37th International Conference on Data Engineering (ICDE)

2375-026X/21/$31.00 ©2021 IEEE
DOI 10.1109/ICDE51399.2021.00085



provides unique opportunities for schema optimization. We
illustrate this using two examples from the medical domain.

Example 1 (Pattern matching query). Consider the ontology
in Fig. 1(a), summary is a property of DrugInteraction concept,
which is connected to DrugFoodInteraction and DrugLabIn-
teraction concepts via inheritance (isA) relationships. Fig. 1(b)
and Fig. 1(c) show two alternative property graphs conforming
to two different schemas. In Fig. 1(b), the vertex di1 (i.e., an
instance of DrugInteraction) leads to both dfi1 and dli1. In
Fig. 1(c), drug1 directly connects to dfi1 and dli1. For any
query that requires edge traversals from drug1 to either dfi1 or
dli1 or both, the property graph 2 requires less number of edge
traversals. A pattern matching query interested in Drug and the
associated risk of DrugFoodInteraction achieves 2 orders of
magnitude performance gains on the optimized property graph
(23ms) compared to the property graph 1 (3245ms).

treat
Indication

has

name descbrand

Drug

Drug
Interaction

isA
DrugLab
Interaction

DrugFood
Interaction

isA

risk

mechanism summary

(a) Snippet of a Medical Ontology

ind1 Fever
desc

drug1

AspirinEcotrin
namebrand

treat

ind2 Headache
desctreat

dfi1

dli1

di1

Delayed Aspirin
interaction

Glucose

summaryrisk

mechanism isA
isA has

(b) Property Graph 1 (Direct)
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Fig. 1: Motivating Example.

Example 2 (Aggregation query). In Fig. 1(a), Drug concept
is also connected to Indication concept via a treat (1:M ) re-
lationship. In this case, we observe that if we replicate certain
properties accessible via a 1:M relationship, edge traversals
can be avoided. Fig. 1(c) shows that the vertex drug1 has an
additional property, which is a list of descriptions replicated
from the property desc of ind1 and ind2. An aggregation query
(COUNT) on the desc of Indication treated by Drug runs 8
times faster on this optimized property graph (78ms) than the
property graph 1 (627ms). Hence, avoiding the edge traversals
is extremely beneficial, especially when the number of edges
between two types of vertices is large.

These two examples show that edge traversal is one of
the dominant factors affecting graph query performance, and
having an optimized schema can greatly improve query per-

formance. We can reduce edge traversals by merging nodes or
replicating data. However, this needs to be done carefully, as
the resulting knowledge graph needs to preserve its semantics
information. Fortunately, ontologies with their rich semantic
information provide a variety of opportunities to reduce graph
traversals. To generate an optimized graph schema, we need to
identify these opportunities and design different techniques to
exploit them in the ontology accordingly. Certain optimization
techniques require data replication resulting in space over-
heads. Hence, the schema optimization also has to consider
the trade-off between the query performance and the space
consumption of the resulting property graph.

Our proposed approach. To the best of our knowledge,
we are the first to address the problem of property graph
schema optimization to improve graph query performance. In
addition to the ontology, our approach also takes into account
the space constraints, if any, and additional information such
as data distribution and workload summaries10. We propose
a set of rules that are designed to optimize the graph query
performance with respect to different types of relationships in
the ontology. When there is a space constraint, we estimate
the cost-benefit of applying these rules to each individual
relationship by leveraging the additional data distribution and
workload information. We propose two algorithms, concept-
centric and relation-centric, which incorporate the cost-benefit
scores to produce an optimized property graph schema.

Contributions. The contributions of this paper can be
summarized as follows:

1. We propose an ontology-driven property graph schema
optimization approach for domain-specific knowledge graphs.

2. We design a set of rules that reduce the edge traversals
by exploiting the rich semantic relationships in the ontology,
resulting in better graph query performance.

3. We propose concept-centric and relation-centric algo-
rithms that harness the proposed rules to generate an optimized
property graph schema from an ontology. The concept-centric
algorithm utilizes the centrality analysis of concepts, and the
relation-centric algorithm uses a cost-benefit model.

4. Our experiments show that our ontology-driven approach
effectively produces optimized graph schemas for two real-
world knowledge graphs from medical and financial domains.
The queries over the optimized property graphs achieve up
to 2 orders of magnitude performance gains compared to the
graphs resulting from the baseline approach.

The rest of the paper is organized as follows. Section II
introduces the basic concepts, formulates the problem, and
provides an overview of our ontology-driven approach. Sec-
tion III describes our optimization rules for different types
of relationships in an ontology. Section IV explains the al-
gorithms to produce optimized property graph schema. We
provide our experimental results in Section V, review related
work in Section VI, and finally conclude in Section VII.

10We refer to the access frequency of concepts, relationships and properties
as workload summaries which will be formally defined later.
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II. PRELIMINARIES & APPROACH OVERVIEW

A. Preliminaries

An ontology describes a particular domain and provides
a structured view of the data. Specifically, it provides an
expressive data model for the concepts that are relevant to
that domain, the properties associated with the concepts, and
the relationships between concepts.

Definition 1 (Ontology (O)). An ontology O (C, R, P )
contains a set of concepts C = {cn|1 ≤ n ≤ N}, a set of data
properties P = {pm|1 ≤ m ≤M}, and a set of relationships
between the concepts R = {rk|1 ≤ k ≤ K}.

An ontology is typically described in OWL [14], wherein
a concept is defined as a class, a property associated with
a concept is defined as a DataProperty and a relationship
between a pair of concepts is defined as an ObjectProperty.
Each DataProperty pi ∈ Pn represents a characteristic of
a concept cn ∈ C and Pn ⊆ P represents the set of
DataProperties associated with the concept cn. Each Object-
Property rk = (cs, cd, t) is associated with a source concept
cs ∈ C, also referred to as the domain of the ObjectProperty,
a destination concept cd ∈ C, also referred to as the range of
the ObjectProperty, and a type t. The type t can be either a
functional (i.e., 1:1, 1:M, M:N), an inheritance (a.k.a isA) or
a union/membership relationship11. In this paper, we use the
ontology as a semantic data model of a knowledge graph.
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Warning
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brand

Data
Property

note
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Fig. 2: Medical Ontology.

We adopt the widely used property graph model from [15].

Definition 2 (Property Graph (PG)). A property graph PG
(V, E) is a directed multi-graph with vertex set V and edge
set E, where each node v ∈ V and each edge e ∈ E has data
properties consisting of multiple attribute-value pairs.

Similar to a relational database schema that describes ta-
bles, columns, and relationships of a relational database, the
property graph schema is critical and beneficial for creating
high-quality domain-specific graphs. A property graph with
an underlying schema enables graph query optimization, and
allows definition of constraints as well as data exchange [13].

A property graph schema PGS can be specified in a data
definition language such as Neo4j’s Cypher [6], TigerGraph’s
GSQL [16], or GraphQL SDL [17]. They all define notions of
node types and edge types, as well as property types that are
associated with a node type or with an edge type. We adopt

11Even if inheritance and union are not ObjectProperties, we simplify the
notation for presentation purposes.

Cypher due to its popularity, but our proposed techniques are
independent of the aforementioned languages. Table I provides
the notations used in this paper.

TABLE I: Notations.

Notations Definitions
O an ontology
ci ci ∈ C: a concept in an ontology
ri ri ∈ R: a relationship in an ontology
ci.Pi all data properties associated to ci
ci.inE all incoming relationships of ci
ci.outE all outgoing relationships of ci
ci.Ri ci.Ri = ci.inE ∪ ci.outE
ri.src the source concept of ri
ri.dst the destination concept of ri
ri.type the relationship type of ri (i.e., 1:1, union,

inheritance, 1:M, or M:N)
PGS a property graph schema
vsi a node schema defined in PGS
vsi.Pi all data properties associated to vsi
esi an edge schema defined in PGS
esi.type the edge type of ei
PG a property graph

B. Approach Overview

Given an ontology O providing a semantic abstraction
of the input data, the problem of property graph schema
optimization is to generate a property graph schema that
produces the best query performance for various graph queries
(e.g., pattern matching, path finding, or aggregation queries).
Optimizing the property graph might entail data replication
and hence increased memory footprint. In real knowledge
graph applications, especially in a multi-tenant setting, there is
a limit on the amount of memory that we can trade for query
performance. Hence, we need to incorporate a space constraint
while producing an optimized property graph schema.

Property Graph 
Schema (PGS)

Graph 
Backend

Graph Queries

Graph
Data

Property Graph 
Schema Optimizer

Relationship
Rules

Schema
Optimization

Ontology
Space Limit

Data Statistics
Workload Summaries

Fig. 3: Approach Overview.

Fig. 3 provides an overview of our property graph schema
optimization approach. The property graph schema optimizer
takes as input an ontology and optionally a space limit, data
statistics, as well as workload summaries12. It utilizes a set of
rules designed for different types of relationships to produce
an optimized property graph schema. The raw graph data is
then loaded into a graph database (e.g., Neo4j or JanusGraph)
conforming to the optimized schema. At query time, users
can directly expresses graph queries against this instantiated
property graph corresponding to the optimized schema.

12Access frequencies of concepts, relationships, and data properties in an
ontology
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III. RELATIONSHIP RULES

Graph queries often involve multi-hop traversal or vertex
attribute lookup/analytics on property graphs. As shown in the
motivating examples, edge traversals over a graph are vital
to the overall query performance. Hence, we focus on the
rich semantic relationships in an ontology and propose a set
of novel rules for different types of relationships, leading to
significant performance improvements on the most common
graph query patterns [18]. We briefly describe these rules
below and the details can be found in [19].

Union Rule. In an ontology, a union relationship (run =
(ci, cj)) contains a union concept (ci) and a member concept
(cj). Each instance of a union concept is an instance of one of
its member concepts, and vice versa. If we create a property
graph directly from the ontology shown in Fig. 2, then the
queries starting from any vertices of either BlackBoxWarning
or ContraIndication concepts have to traverse through some
vertex of Risk in order to reach the vertices of Drug. This
leads to unnecessary edge traversal.

Drug (name STRING, brand STRING),
ContraIndication (desc STRING),
BlackBoxWarning (note STRING,
route STRING),
(Drug)-[cause]->(ContraIndication),
(Drug)-[cause]->(BlackBoxWarning)

(a) Optimized PGS

drug1

Ibuprofen Motrin

ci1

Asthma

bbw1

Oral Stroke

cause cause

name brand

desc route note

(b) Optimized PG

Fig. 4: Union Relationship.

Hence we propose a union rule to alleviate this issue.
The union rule first creates a union node vsi (based on the
corresponding ci in O) and its member node vsj (based on the
corresponding cj in O) in the property graph schema. Then
the member node vsj is connected to the other nodes that
connect to the union node vsi in the property graph schema.
Fig. 4(a) and Fig. 4(b) show the property graph schema and
the corresponding property graph after applying the union rule
to the above example.

Inheritance Rule. An inheritance relationship (rih =
(ci, cj)) contains a parent concept (ci) and a child concept
(cj). Similar to the union rule, we create a parent node vsi
(corresponding to ci) and its child node vsj (corresponding to
cj) in the property graph schema. Unlike a union concept,
a parent concept in the inheritance relationship may have
instances that are not present in any of its children concepts.
This leads to the following three cases.

1) Connect the child node directly to the nodes that are
connected to its parent node, and attach all data proper-
ties vsi.Pi of vsi to the child node vsj in the schema;

2) Connect the parent node directly to the nodes that are
connected to its child node, and attach all data properties
vsj .Pj of vsj to the parent node vsi in the schema;

3) Or connect the parent vsi and child vsj nodes with an
edge of type isA.

Fig. 5(a) and Fig. 5(b) demonstrate the first scenario where
the data properties (summary) of the parent node DrugInter-
action are directly attached to two children nodes DrugFood-
Interaction and DrugLabInteraction. Fig. 5(c) and Fig. 5(d)
depict the second case where the data properties risk and
mechanism of two respective child nodes are now attached
to the parent node DrugInteraction.

Drug (name STRING, brand STRING),
DrugFoodInteraction (risk STRING,
summary STRING),
DrugLabInteraction (mechanism STRING,
summary STRING),
(Drug)-[has]->(DrugFoodInteraction),
(Drug)-[has]->(DrugLabInteraction)

(a) Optimized PGS 1

drug2
Aspirin Ecotrin

dfi1 dli1

moderate

has has

delayed

moderate glucose

name brand

summary

risk summary

mechanism

(b) Optimized PG 1

Drug (name STRING, brand STRING),
DrugInteraction (summary STRING,
risk STRING, mechanism STRING), 
(Drug)-[has]->(DrugInteraction)

(c) Optimized PGS 2

drug2
Aspirin Ecotrin

di1 di2

moderate

has has

delayedmoderate glucose
summary risk summary mechanism

name brand

(d) Optimized PG 2

Fig. 5: Inheritance Relationship.

However, attaching data properties to a parent or child node
incurs data replication. Hence we exploit the Jaccard similarity
between ci.Pi and cj .Pj from the given ontology O to decide
the best strategy for the inheritance relationship:

JS(ci.Pi, cj .Pj) = |ci.Pi ∩ cj .Pj | / |ci.Pi ∪ cj .Pj |. (1)

If JS(ci.Pi, cj .Pj) ≥ θ1, attaching the data properties from
the child node to the parent node incurs less space overhead
compared to the other way. If JS(ci.Pi, cj .Pj) ≤ θ2 (θ2 ≤
θ1), it is more cost effective to make the data properties of the
parent node available at the child node. The inheritance rule
avoids edge traversals in the resulting property graph.

One-to-one Rule. A 1:1 relationship (r1:1 = (ci, cj), ci 6=cj)
indicates that an instance of ci can only relate to one instance
of cj and vice versa. Two concepts (ci and cj) of a 1:1
relationship can be represented as one combined node vsij in
the optimized schema, which is similar to joining two tables
in relational databases where one row in one table is linked
with only one row in another table and vice versa. If two
tables are merged, then a join can be saved when two tables
are queried together. The other tables can still join with the
merged table through their respective relationships. Note that
the two concepts that are merged to create a new combined
node are not removed from the original graph. Namely, the
1:1 rule preserves the original semantics and does not lead to
any information loss.

In Fig. 6(a), IndicationCondition is the node with two data
properties, name and note, attached, representing Indication
and Condition. Hence the edge traversal (e.g., from Drug to
Condition in Fig. 2) is avoided and the number of instance
vertices (i.e., space consumption) is reduced as well.

One-to-many Rule. A 1:M relationship (r1:M = (ci, cj))
indicates that an instance of ci can potentially refer to several
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Drug (name STRING, brand STRING),
IndicationCondition (desc STRING,
name STRING),
(Drug)-[treat]->(IndicationCondition)

(a) Optimized PGS

ic1

Atopic 
dermatitis

Steroid-
responsive

desc
namedrug2

Aspirin

Ecotrin

name

brand
treat

(b) Optimized PG

Fig. 6: 1:1 Relationship.

instances of cj). However, an instance of cj cannot have
more than one corresponding instance of ci. To better support
the aggregation (e.g., COUNT, SUM, AVG, etc.) and neigh-
borhood (1-hop) lookup functions in graph queries, we first
create two nodes vsi and vsj corresponding to ci and cj in
the optimized schema. Then we propagate each data property
vsj .Pj of vsj as a property of type LIST to the other node
vsi (Fig. 7(a)). This is similar to denormalization technique
in relational databases where data replication is added to one
or more tables in order to avoid costly joins.

Drug (name STRING, brand STRING,
Indication.desc LIST),
Indication (desc STRING),
(Drug)-[treat]->(Indication)

(a) Optimized PGS

ind1 Fever
desc

drug2

Aspirin

Ecotrin

name

brand treat

ind2 Headache
desc

treat
[Fever, Headache]
Indication.desc

(b) Optimized PG

Fig. 7: 1:M Relationship.

As depicted in Fig. 7(b), Indication.desc is a data property
of drug2 consisting of a list of descriptions (i.e., [Fever,
Headache]) that saves the aggregation queries edge traversals
to the other instance vertices (e.g., ind1 and ind2). However,
the newly introduced property of type LIST introduces addi-
tional space overheads. Therefore, choosing the appropriate
set of data properties from each 1:M relationship is critical to
both query performance and space consumption.

Many-to-many Rule. An M :N relationship (rM :N = (ci,
cj)) is essentially equivalent to two 1:M relationships, namely,
r1:M = (ci, cj) and r1:M = (cj , ci). Therefore, the many-to-
many rule is identical to the one-to-many rule, except that
the property propagation is done for both directions. Hence
applying the many-to-many rule leads to the same potential
gains for queries with aggregate or neighborhood (1-hop)
lookup functions at the cost of introducing space overhead.

In summary, all proposed rules reduce the number of edge
traversals which improve graph query performance. Moreover,
these rules can be utilized in graph systems using different
storage backends. The potential benefits could be more signif-
icant when the storage backend changes from in-memory to
disk as edge traversals may incur additional disk I/Os. How-
ever, these rules may incur space overheads. In Section IV, we
describe our property graph schema optimization algorithms,
trading off performance gain and space overhead.

IV. PROPERTY GRAPH SCHEMA OPTIMIZATION

In this section, we first introduce a property graph schema
optimization algorithm in an ideal scenario (i.e., no space con-
straints). Then, we describe our concept-centric and relation-
centric algorithms that harness the proposed rules and a cost-
benefit model to generate an optimized property graph schema
for a given space constraint.

A. Optimization Without Space Constraints
To produce an optimized property graph schema, we need

to determine how to utilize the proposed rules described in
Section III. A straightforward approach is to iteratively apply
these rules in order and generate the property graph schema.
We provide an overview of the schema optimization algorithm
below and the details can be found in [19].

The proposed schema optimization algorithm takes as input
an ontology O and first computes the Jaccard similarity scores
for all inheritance relationships. Then, it iteratively applies
the appropriate rule to each relationship in the ontology. At
the end of each iteration, it checks if the ontology converges.
Finally, when no more rule applies, a property graph schema
is generated. In fact, these rules can be applied in any order,
and the generated property graph schema is always the same.

Theorem 1. Applying the union, inheritance, 1:M and M:N
rules in any order produces a unique PGS , if there is no space
constraint.

Proof. The proof can be found in the technical report [19].

B. Schema Optimization With Space Constraints
While the naı̈ve approach harnesses all potential optimiza-

tion opportunities aggressively, it incurs space overhead from
union, inheritance, 1:M, and M:N rules. This can be expensive,
especially in a multi-tenant architecture, where many large-
scale property graphs co-exist. Hence our goal is to produce
an optimized property graph schema for a given space limit.
To measure the quality and the space consumption of an
optimized property graph schema, we leverage additional
information such as data and workload characteristics.

Data characteristics contain the basic statistics about each
concept, data property, and relationship specified in the given
ontology. The statistics include the cardinality of data instances
of each concept and relationship, as well as the data type of
each data property. The data characteristics reflect the cost of
applying the proposed rules to each relationship.

Access frequencies provide an abstraction of the work-
load in terms of how each concept, relationship, and data
property accessed by each query in the workload. We use
AF(ci

rk−→ cj .Pj) to indicate the frequency of queries (the
number of queries) that access a data property in cj .Pj

from the concept ci through the relationship rk. The high
frequency of a relationship indicates its relative importance
among all relationships in the given ontology. Hence the access
frequencies reveal the benefit of optimizing each relationship.

Definition 3 (Optimal Property Graph Schema). Let PGS be
the set of all property graph schemas, such that ∀PGS ′ ∈
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PGS we have Cost(PGS ′) ≤ S, where S is a given
space constraint. PGSopt ∈ PGS is an optimal property
graph schema if @ PGS ′ ∈ PGS such that Benefit(PGS ′) >
Benefit(PGSopt).

An optimal property graph schema dictates which subsets
of relationships and their associated concepts are chosen to
optimize for a given space constraint S. The search space thus
consists of all possible combinations of relationship subsets,
which is exponential in the number of relationships in a given
ontology. As shown later in Proposition 1, finding an optimal
property graph schema is NP-hard. Hence, we need to design
efficient heuristics to produce a near-optimal property graph
schema. To achieve this goal, we design a cost-benefit model
(Eqs. 2-5) to capture the above described information and
propose two property graph schema optimization algorithms
driven by the cost-benefit model.

1) Concept-Centric Algorithm: As described in Section II,
an ontology describes a particular domain and provides a
concept-centric view over domain-specific data. Intuitively,
some concepts are more critical to the domain, and have more
relationships with the other concepts [20]. We expect these key
concepts to be queried more frequently than other concepts,
which is confirmed in [21]. This leads to our concept-centric
algorithm that exploits the structural information in an ontol-
ogy to identify key concepts which we believe are more likely
to be accessed more often. Hence, this algorithm is useful
when no workload summary is available.

To determine these key concepts, we utilize centrality anal-
ysis over the ontology to rank all concepts according to their
respective centrality score. The centrality analysis is based
on the commonly used PageRank algorithm [22] (a variant
of Eigenvector centrality) as our intuition of key concepts
is similar to the importance of website pages. Compared to
PageRank, our OntologyPR (Algorithm 1) further introduces
weights for both in and out degrees of concepts in determining
their centrality scores.

Inheritance. We first remove inheritance relationships from
the ontology while running the initial PageRank algorithm.
This allows us to calculate the rank of a concept based on its
relationships to non-hierarchical concepts. After computing the
PageRank scores of all concepts, we re-attach the inheritance
relationships and update the score of each concept by finding
the parent with the highest score. The intuition is that a child
concept inherits all its other properties from the same chain of
concepts and hence would have a similar estimate of centrality.

Unions. For each incoming relationship to a union concept,
we create new relationship between the source concept and
each of the member concepts of the union. For each outgoing
relationship, similarly, we create new relationships between
the destination and each of the member concepts of the union.
Thus the page rank mass is appropriately distributed to/from
the member nodes of the union. Finally, the union node
itself is removed from the graph as its contribution towards
centrality analysis has already been accounted for by the new
relationships to/from the member concepts of the union.

Out-degree of Concepts. In the default PageRank algo-
rithm, the weight distribution is proportional to the in-degree
of a node as it receives PageRank values from all its neighbors
that point to it. However, for a domain ontology, we observe
that both in-degree and out-degree are equally important in
terms of the key concept. Hence, we introduce a reverse edge
in the ontology, essentially making the graph equivalent to an
undirected graph. Then, the OntologyPR algorithm uses this
modified ontology as an input to determine the centrality score
of each concept.

Algorithm 1 Ontology PageRank Algorithm (OntologyPR)

Input: O = (C,R, P )
Output: O = (C,R, P )

1: Cun ← empty set
2: for each r ∈ R of type union do
3: ci ← r.src // the union concept of r
4: cj ← r.dst // the member concept of r
5: Cun.add(ci)
6: cj .Rj ← (cj .Rj ∪ ci.Ri)\r
7: O.remove(Cun)
8: for each r ∈ R do
9: if r is of type inheritance then

10: Rih.add(r)
11: O.remove(r)
12: else
13: O.add(r′) // add a reverse relation r′

14: pageRank(O) // PageRank on the modified ontology
15: O.add(Rih) // add inheritance relationships back
16: updatePR(O) // update PageRank score for inheritance concepts
17: return O // O associated with PageRank scores

Using OntologyPR, we associate PageRank scores with
each concept in the ontology. To accurately capture the relative
importance of the concepts, we further leverage the data
characteristics and access frequency information to rank all
concepts. The ranking score for a concept is defined as follows.

Score(ci) =
ci.pr ×AF (ci)

Size(ci)
, (2)

where ci.pr denotes the PageRank score of ci, AF (ci) de-
notes the access frequency of ci including accessing all data
properties of ci, and Size(ci) denotes the size of ci including
all data properties of ci.

Algorithm 2 Concept-Centric Algorithm

Input: Ontology O = (C,R, P ), space limit S
Output: A property graph schema PGS

1: O ← ontologyPR(O)
2: Csrt ← sort(C)
3: for each c ∈ Csrt do
4: for each r ∈ c.R do
5: S′ ← S
6: O, S ← applyRules(r, S′)
7: if S < 0 then
8: break
9: PGS ← generatePGS(O)

10: return PGS

Based on Eq. 2, our concept-centric algorithm (Algorithm 2)
first sorts all concepts in a descending order of their respective
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scores (Lines 1-2). Then, it iterates through each concept
c (Lines 3-8). For each concept, the algorithm utilizes the
applyRules procedure to apply all rules (Section III) to
the relationships connecting to c. During this process, the
algorithm updates the space limit as it is consumed by the
rules. If the space is fully exhausted, the algorithm terminates
and returns the optimized property graph schema (Lines 7-10).

Complexity Analysis. The OntologyPR is the dominant
procedure in Algorithm 2, and its time complexity is O((|R|+
|C|)k), where |R| is the number of relationships, |C| is
the number of concepts, and k is the maximum number
of iterations. The time complexity of sorting concepts is
O(|C|log|C|). Finally, the time complexity of applying rules
to the sorted concepts is O(|R|). Thus, the overall time
complexity of Algorithm 2 is O((|R|+ |C|)k).

2) Relation-Centric Algorithm: Intuitively, the concept-
centric algorithm prioritizes the relationships of the key con-
cepts in an ontology by leveraging information such as access
frequency, data characteristics, and structural information from
the ontology. However, the relationship selection is limited to
each concept locally. Namely, the concept-centric algorithm
does not have a global optimal ordering among all relation-
ships in the ontology. To address this issue, we propose the
relation-centric algorithm based on a cost-benefit model for
each type of relationships described as follows.

Cost Benefit Models. The union rule, introduced in Sec-
tion III, connects the member concept directly to all concepts
that are connected to the union concept. Then, the benefit
of applying this rule to a union relationship r is the access
frequency of r, and the cost is the number of edges that we
copy from the union concept to the member concept. The cost-
benefit model is defined as follows.

Benefit(r) = AF (ci
r−→ cj)

Cost(r) =
∑

r′∈(ci.Ri\Run)
|r′|, (3)

where ci denotes the union concept and |r′| denotes the
number of edges between the instance vertices of ci and the
ones of a neighborhood concept13 of ci.

The benefit of applying the inheritance rule to an inheri-
tance relationship is the access frequency of that relationship
multiplied by the Jaccard similarity between ci.Pi and cj .Pj .
Depending on that similarity, the cost of inheritance rule can
be either the number of new edges attached to the parent, or
the number of new edges attached to the child. Formally:

Benefit(r) = AF (ci
r−→ cj .Pj)× JS(ci, cj)

Cost(r) =


∑

p∈cj .Pj
|cj | × p.type+

∑
r∈(cj .Rj\Rih)

|r|,
if θ1 < JS(ci, cj)∑

p∈ci.Pi
|ci| × p.type+

∑
r∈(ci.Ri\Rih)

|r|,
if JS(ci, cj) < θ2,

(4)
where JS(ci, cj) denotes the Jaccard similarity between ci.Pi

and cj .Pj , p.type indicates the data type size of p (e.g., the
size of INT, DOUBLE, STRING, etc.),

∑
p∈cj .Pj

|cj |× p.type
(
∑

p∈ci.Pi
|ci| × p.type) denotes the space overheads incurred

13The neighborhood concepts do not include the member concepts of ci.

by propagating cj .Pj (ci.Pi) to ci (cj), and
∑

r∈(ci.Ri\Rih)
|r|

(
∑

r∈(cj .Rj\ Rih) |r|) denotes the space overhead incurred by
connecting the neighbors of ci (cj) to cj (ci).

Similarly, the cost-benefit model for one-to-many rule,
leveraging both data characteristics and access frequency in-
formation, is described as:

Benefit(r) = AF (ci
r−→ cj .p)

Cost(r) = |r| × p.type, (5)

where |r| × p.type denotes the space overhead incurred by
replicating p as a data property of type LIST to ci.

As described in Section III, each M:N relationship is equiva-
lent to two 1:M relationships. Thus, we first convert each M:N
relationship into two 1:M relationships, and then use Eq. 5 to
decide the cost-benefit for each of them. Potentially some of
the original M:N relationships could be optimized for only one
direction. This increases the flexibility of applying many-to-
many rule such that more frequently accessed data properties
can be propagated to the other end of the relationship.

With the cost and benefit scores, our goal is to select a
subset of relationships in the ontology that maximize the total
benefit within the given space limit. We map our relationship
selection problem to the NP-hard 0/1 Knapsack Problem [23].

Proposition 1 (Reduction). If both benefit and cost of a re-
lationship are positive, then every instance of the relationship
selection problem can be reduced to a valid instance of the
0/1 Knapsack problem.

Proof. The proof can be found in the technical report [19].

We adopt the fully polynomial time approximation scheme
(FPTAS) [23] for our relation selection problem. It guarantees
that the benefit of the optimized property graph schema
Benefit(PGS) is within 1-ε (ε ∈ (0,1]) bound to the benefit
of the optimal property graph schema Benefit(PGSopt).

Algorithm 3 Relation-Centric Algorithm

Input: O = (C,R, P ), space limit S
Output: A property graph schema PGS

// Compute Jaccard similarity for each inheritance relationship
and get all parent concepts

1: for each r ∈ R of type inheritance do
2: r.js← computeJS(r)
3: Benefit, Cost← ∅
4: for each ri ∈ R do
5: Benefit[i]← Benefit(ri)
6: Cost[i]← Cost(ri)
7: Ropt ← knapsack(R,Benefit, Cost, S)
8: for each ri ∈ Ropt do
9: O ← applyRules(ri)

10: PGS ← generatePGS(O)
11: return PGS

Algorithm 3 takes as inputs an ontology and the space limit.
It computes the Jaccard similarity scores for all inheritance
relationships (Lines 1-2). Then it computes the cost and benefit
for each relationship in the ontology O using Eqs. 3-5 (Lines
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3-6). Next, the FPTAS algorithm is used to select the near-
optimal subset of relationships Ropt with the given space limit
S (Line 7). In applyRules procedure, the algorithm applies
the corresponding rules; r ∈ Ropt (Lines 8-9). Lastly, an
optimized property graph schema is generated (Lines 10-11).

Complexity Analysis. The FPTAS knapsack is the dom-
inant procedure in Algorithm 3, and its time complexity is
O(|R|2 b|R|/εc) [23], where |R| is the number of relationships
and ε∈(0, 1]. The rest of Algorithm 3 is linear to |R|. Thus,
the time complexity of Algorithm 3 is O(|R|3).

V. EXPERIMENTAL EVALUATION

A. Experimental Setup

Infrastructure. We implemented our approach in Java
with JDK 1.8.0 running on Ubuntu 14.04 with 16-core 3.4
GHz CPU and 128 GB of RAM. We choose two popular
graph database systems, Neo4j and JanusGraph, as our graph
backends. We executed each experiment ten times and here
we report their average.

Data sets. To evaluate the effectiveness of our system on
different application domains, we use the following two data
sets and their corresponding ontologies.

1. Medical data set (MED) contains medical knowledge that
is used to support evidence-based clinical decision and patient
education. The total size of this data set is around 12 GB. The
corresponding medical ontology consists of 43 concepts, 78
properties, and 58 relationships (11 inheritance, 5 one-to-one,
30 one-to-many, and 12 many-to-many relationships).

2. Financial data set (FIN) [24] includes data from two
main sources: Securities and Exchange Commission (SEC)14

and Federal Deposit Insurance Corporation (FDIC)15. The size
of the data set is approximately 53 GB. The corresponding
financial ontology contains 90 concepts, 96 properties, and
103 relationships (4 union, 69 inheritance, and 30 one-to-many
relationships).

Methodology and metrics. To evaluate the quality of the
property graph schemas produced by our algorithms, we vary
the space limit and the Jaccard similarity thresholds for inher-
itance relationships with two different workload summaries
(uniform and Zipf). Specifically, we show how effectively
PGSG leverages the given space limit, how robust PGSG is
to various workloads, and how sensitive PGSG is to differ-
ent similarity thresholds. PGSG chooses the property graph
schema with a higher total benefit score from relation-centric
(RC) and concept-centric (CC) algorithms. We measure the
quality of a property graph schema by BR = BSC

BNSC
, where

BNSC is the total benefit score of the property graph schema
generated by the schema optimization algorithm without any
space constraint, and BSC indicates the total benefit score
achieved by either RC or CC algorithm.

To verify the graph query performance, we express most
graph queries in both Cypher [6] and Gremlin [25], including
path, reachability, and graph analytical queries. Among these

14https://www.sec.gov/dera/data/financial-statement-data-sets.htm
15https://www.fdic.gov/regulations/resources/call/index.html

query types, we construct a variety of query workloads con-
forming to different workload distributions over both FIN and
MED. The details of these query workloads are described in
Section V-C. We use latency as the metric to measure these
graph queries. Latency is measured in milliseconds as the total
time of all queries in a workload executed in a sequential order.
We also use the number of edge traversals required in a query
as the second metric. It directly reveals the computational
savings achieved by our optimized property graph schema.

B. Property Graph Schema Quality

1) Varying Space Constraint: In Fig. 8 and Fig. 9, we
focus on the quality of the property graph schema produced by
our concept-centric (CC) and relation-centric (RC) algorithms
compared to our method without space constraints (NSC). We
choose two commonly seen workload summaries, uniform and
Zipf distributions. Namely, the access frequencies of concepts
in the ontology follow either uniform or Zipf distribution.
And the skew factor of Zipf distribution is set to 1. We
first use NSC to produce an optimal property graph schema
PGSNSC without any space constraint, and then compute the
total benefit score BNSC achieved by PGSNSC . The space
used by NSC is approximately 29GB for MED and 106GB for
FIN, respectively. The total amount of space needed by the
direct mapping algorithm SDIR is 12GB for MED and 53GB
for FIN, respectively. Then we vary the space constraint from
SDIR to SNSC , such that the range of the Y-axis in Fig. 8
and Fig. 9 is from 0 to 1.

In Fig. 8, we observe that RC consistently outperforms CC
with both uniform and Zipf workloads. The reason is that RC
has a global ordering of all relationships, and the global order-
ing is near-optimal with respect to the given space constraint
due to the adopted approximate Knapsack algorithm. On the
contrary, CC suffers from a rather local optimal ordering with
respect to each concept. Hence, it misses the opportunity to
utilize the space for more beneficial relationships. Moreover,
we observe that with approximately 20% of the maximum
space constraint, RC is able to produce high-quality property
graph schemas which achieve above 50% of the total benefit.
In other words, both algorithms can effectively utilize the
rather limited space. Lastly, both RC and CC produce the same
property graph schema as PGSNSC when the space constraint
reaches 100%, which substantiates Theorem 1.

Similarly, RC outperforms CC In Fig. 9, as CC utilizes the
space for one concept at a time, missing the opportunities for
more beneficial relationships in the ontology. We also observe
that both algorithms, with uniform and Zipf workloads, have
a couple of drops when the space constraint increases. The
reason is primarily due to the complexity of FIN ontology.
Given that the inheritance relationships are more dominant
in FIN, the given space may be exhausted quickly by certain
inheritance relationships. Again, RC and CC produce the same
schema as PGSNSC with 100% space constraint.

2) Varying Jaccard Similarity: In Fig. 10, we show the
sensitivity of both CC and RC with respect to the Jaccard
similarity thresholds (θ1 and θ2). In this experiment, we choose
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Fig. 8: Varying Space Constraints (MED).
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Fig. 9: Varying Space Constraints (FIN).

FIN ontology because it consists of multiple inheritance
relationships. We also choose the same uniform and Zipf
workloads used in Section V-B1. Note that the space constraint
in this experiment is set to (SNSC-SDIR)/2 under each specific
Jaccard similarity threshold. The reason is that the cost (space
overhead) of the same inheritance relationship can vary (Eq. 4)
depending on the similarity threshold. Consequently, the space
consumption of the optimal property graph changes under
different thresholds.

As shown in Fig. 10, both CC and RC are robust under
different similarity thresholds. They achieve more than 70%
of the maximum benefit score with only 50% space constraint.
This shows that when the cost-benefit of an inheritance rela-
tionship changes due to a different threshold, both CC and
RC can adjust accordingly by choosing different and more
beneficial relationships to optimize. Hence, the total benefit
scores achieved by both algorithms are relatively stable.
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Fig. 10: Varying Jaccard Thresholds (FIN).

In summary, CC and RC produce high quality property
graph schemas under various settings. They work effectively
with any given space constraints. Moreover, RC always pro-
duces a near-optimal property graph schema and outperforms
CC in most cases. Our property graph schema generator still
leverages both algorithms to choose the property graph schema
with the highest benefit score under any space constraints.

C. Graph Query Execution

In this section, we focus on the graph query execution
performance over the property graphs created by our ontology-
driven approach. We use both MED and FIN data sets to
conduct our experiments. First, we create a micro benchmark
to empirically examine whether the property graph schema
from our approach can actually benefit a set of graph primitives
including simple pattern matching, vertex property lookup,

and aggregation on vertices. Second, we study the overall
execution time for a given graph query workload by mixing the
above graph primitives. We run the graph queries, expressed in
Cypher and Gremlin, on Neo4j and JanusGraph, respectively.
Here our goal is not to compare the performance between two
systems, rather to show that our schema optimization results in
query performance improvements irrespective of the backend.

1) Microbenchmark Using Graph Primitives: With both
MED and FIN data sets, we compare the query performance
of the property graph created by the optimized graph schema
(OPT) to the baseline property graph created by a direct
mapping of the ontology (DIR). OPT is produced by the
our method without space constraints (NSC) and the Jaccard
similarity thresholds are θ1 = 66%, θ2 = 33%. All queries
(Q1-Q12) are first expressed against DIR and then rewritten
into the semantically equivalent queries over OPT. These
queries are constructed according to the query patterns in [26].
We list several representative queries below.

Q1: MATCH (d:Drug)-[p:cause]->(r:Risk)<-
[p2:unionOf]-(ci:ContraIndication)
RETURN d.name
Q3: MATCH (aa:AutonomousAgent)<-[r1:isA]-
(p:Person)<-[r2:isA]-(cp:ContractParty)
RETURN aa
Q5: MATCH (dl:DrugLabInteraction)-[r:isA]->
(di:DrugInteraction)
RETURN di.summary
Q7: MATCH (n:Corporation)
RETURN n.hasLegalName
Q9: MATCH p=(d:Drug)-[r:hasDrugRoute]->
(dr:DrugRoute)
RETURN dr.drugRouteId, size(COLLECT(
d.brand)) AS numberOfDrugBrands
Q11: MATCH p=(con:Contract)-[r:isManagedBy]->
(corp:Corporation)
RETURN size(COLLECT(con.hasEffectiveDate)) AS
numberOfEffectiveDates

As shown in Fig. 11 , the results are unequivocal. The
optimized schema has significant advantages over the direct
mapping schema for all types of queries. The graph pattern
matching queries (Q1-Q4) report all matches of a sub-graph
with 3 vertices and 2 edges in the property graph. Query
execution times with our approach are at least 2.4 times faster
than the direct mapping schema. The number of edge traversals
on DIR is always 2 as the query is specified with 2 edges
connecting 3 vertices. On the other hand, our property graph
only requires at most 1 edge traversal as some of the neighbor
vertices have been already merged with the starting vertices.
Q5-Q8 are vertex property lookup queries. Both Q5 and Q8

are interested in a property of a vertex of a parent concept,
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Fig. 11: Microbenchmark - Pattern Matching (Q1-Q4), Property Lookup (Q5-Q8), Aggregation (Q9-Q12).

and the starting vertex is a vertex of a child concept. Q6 starts
from a vertex and looks for a property of its neighbor vertex.
OPT has the property of type List with the starting vertex,
and is able to return the result without any edge traversal.
Q7 looks for a property of the starting vertex. In this case,
OPT and DIR have identical query performance as no edge
traversal is required. Hence OPT takes advantage of having
the property of the parent concept available at the starting
vertex, and consequently returns the result without any edge
traversals. Therefore, the query runs more than an order of
magnitude slower on the property graph of DIR than the one
on OPT in the worst case.
Q9-Q12 are graph aggregation queries that involve traver-

sal from one vertex to the other. They count the number
of neighbors of the starting vertex. On average, the query
execution time is an order of magnitude faster for OPT
approach compared to DIR. Again, the reason is that the
aggregation on the neighbor vertices can be instantaneously
returned from the starting vertex. The above results suggest
that using the proposed ontology-driven approach can bring
significant benefits to a variety of graph queries.

Lastly, we observe that the performance gain on Neo4j is
more substantial compared to JanusGraph (e.g., Q3, Q4, Q9,
etc.). This shows that disk-based graph systems (e.g., Neo4j)
benefits much more from our techniques, as the optimized
schema requires significantly less disk I/O. Namely, the graph
system loads less number of vertices and edges into memory.
We expect such benefit to become even greater when the size
of the property graph increases.

TABLE II: Microbenchmark - Number of Edge Traversals.

Graph # Edge Traversals Graph # Edge Traversals
Queries DIR OPT Queries DIR OPT
Q1 21,608 6,072 Q7 0 0
Q2 288,142 115,014 Q8 493,588 0
Q3 36,272 0 Q9 67,397 0
Q4 510,460 97,614 Q10 429,636 15,327
Q5 38,768 0 Q11 524,265 0
Q6 32,586 0 Q12 110,4756 548,262

In addition, Table II reveals that OPT substantially reduces
the number of edge traversals required in most queries, which
leads to significant computational savings and performance
gains. In several cases (e.g., Q3, Q6), edge traversals can

be completely avoided as the queried information is available
locally within the starting vertices. On the other hand, the
performance gains of certain queries (e.g., Q5, Q8, Q12) are
not as significant as others, even though the number of edge
traversals with OPT is much smaller than the one with DIR.
The reason is that the costs of lookup and return operations
are non-trivial in both DIR and OPT, which can be observed
from the latency of these queries in Fig. 11 as well.

2) Graph Query Workload Performance: To evaluate the
runtime performance of the property graph schema generated
by our approach, we first generate a set of query workloads,
including both uniform and Zipf distributions in terms of the
access frequency of the concepts in the ontology. We vary
the Zipf’s skew factor from 0 (i.e., uniform distribution) to 2
(highly skewed). All query workloads consist of 15 queries of
mixed types (i.e., pattern matching, lookup, and aggregation),
similar to the ones used in the microbenchmark. The space
limit is set to 20% of the space consumed by NSC (i.e.,
15.4GB for MED and 80GB for FIN). The Jaccard similarity
thresholds are θ1 = 66% and θ2 = 33%. The optimized
schemas (OPTMED and OPTFIN) are produced by the best
performing algorithm of RC and CC.

TABLE III: Benefit Ratio w.r.t BNSC .

Skew MED FIN
Factor 0 1 1.5 2 0 1 1.5 2

RC 56% 59% 62% 71% 67% 71% 74% 88%
CC 30% 43% 50% 63% 65% 74% 80% 88%

Table III shows the quality of the property graph schema
produced by RC and CC compared to the one without space
constraints NSC. We observe that both RC and CC correctly
prioritize the most cost-effective relationships when the work-
loads are highly skewed. RC performs better than CC over
MED, because MED has more data properties per concepts
and RC makes more flexible decisions in terms of which
relationships to optimize. On the other hand, CC performs
better than RC over FIN as it successfully selects few concepts
that are frequently accessed by the highly skewed workloads.

We compare our optimized schemas to the direct mapping
schemas (DIRECTMED, DIRECTFIN) on both JanusGraph and
Neo4j. The total query latency measures the performance
on these property graphs corresponding to different schemas.
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Fig. 12 shows the total query latency in log scale. Both
OPTMED and OPTFIN offer significant performance boosts to
the graph query workloads on both JanusGraph and Neo4j.
In Fig. 12(a), we observe that the total query latency on the
optimized schema, on average, is around 7 and 26 times faster
than the direct mapping one over MED and FIN, respectively.
The winning margin is substantially bigger (i.e., 129 and 176
times faster) on Neo4j (Fig. 12(b)). The total query latency on
both optimized schema is approximately 2 orders of magnitude
faster than the direct mapping. Moreover, we also observe that
the total query latency decreases with increasing skew factor.
Both OPTMED and OPTFIN achieve the lowest latency when
the workload distributions are highly skewed. This indicates
that the most frequently accessed concepts and relationships
in the workloads are chosen to be optimized given the space
limit. Based on these results, we verify that the designed
rules for different types of relationships in the ontology are
effective in terms of reducing edge traversals and consequently
improving the graph query performance. Furthermore, we
demonstrate that our approach can effectively utilize the given
space constraint by leveraging data distribution and workload
summaries.

(a) JanusGraph (b) Neo4j

Fig. 12: Total Query Latency (best viewed in color).

D. Efficiency of Property Graph Schema Algorithms

We also study the efficiency of our concept-centric and
relation-centric algorithms. The execution times to produce
an optimized property graph schema with different space
constraints range from 23 to 192 ms in CC, and from 34 to 373
ms in RC. We also observe that neither algorithm is sensitive to
the space constraint, since both algorithms have a polynomial
time complexity with respect to the number of concepts and
relationships in the given ontology. Due to space constraints,
the detailed analysis can be found in [19].

VI. RELATED WORK

Schema optimization for improving query performance has
been studied in the database community for decades [27]–[30].
In recent years, the emergence of many large-scale knowledge
graphs has drawn attention for schema optimization. In this
section, we present important works in this field, highlighting
the main differences to our approach.

Schema Optimization in RDBMS/NoSQL. Schema design
in relational database systems has been extensively stud-
ied [28], [29], [31]–[34]. RDBMSs provide a clean separation

between logical and physical schemas. The logical schema
includes a set of table definitions and determines a physical
schema consisting of a set of base tables [28], [29], [31].
The physical layout of these base tables is then optimized
with auxiliary data structures such as indexes and materialized
views for the expected workload [31], [33]. Typically, the
physical design often involves identifying candidate physical
structures and selects a good subset of these candidates [34].
NoSE [30] is introduced to recommend schemas for NoSQL
applications. Its cost-based approach utilizes an integer pro-
gramming formulation to generate a schema based on the
conceptual data model from the application.

In principle, our approach is similar to the logical schema
design in RDBMSs, which defers the physical design to the
underlying graph systems. Other than that, our approach is
different from the above methods since the data modeling for
graphs is inherently different from the relational data model.
Specifically, the graph structure results in more expressive
data models than those produced using relational databases,
allowing the formation of graph queries (e.g., reachability,
path finding, pattern matching) in a very intuitive fashion.
Moreover, our approach exploits the rich semantic information
available in an ontology to drive the schema optimization,
which is not considered by any of the previous works.

Schema Optimization in Knowledge Graphs. In the last
few years, RDF has been growing significantly for expressing
graph data. A variety of schemas have been proposed for
physically storing graph data in both centralized and dis-
tributed settings [9], [10], [12], [35]–[40]. Some of these works
focus on optimizing RDF data storage and SPARQL queries
based on either workload statistics [9], [10], [36], [37] or
heuristics [11]. A fundamental difference to those works is that
we neither re-load the data to follow a new schema, nor build
new indices, nor optimize the queries on-the-fly (e.g., join
reordering). Instead, inspired by database literature as stated
above, we provide an optimized property graph schema design
before loading the data, and directly instantiate a property
graph conforming to this schema on a graph database. Graph
queries are then executed on the graph database, where graph
query optimization techniques can be further utilized.

Other works [12], [38]–[40] attempt to transform RDF data
into relational data and provide SPARQL views over relational
schemas, leveraging the many years of experience in RDBMS
schema optimization. Unlike those approaches, we do not cre-
ate views over a property graph. Instead, we directly express
property graph queries in Cypher or Gremlin over optimized
property graphs. Whether a graph database internally uses
views or not for query optimization is orthogonal to this work.
Thakkar [41] introduces Gremlinator, a SPARQL-to-Gremlin
translator, to enable users to query property graph systems
using SPARQL. However, it does not optimize the graph stored
in the graph database. We see Gremlinator as a complementary
work that could potentially exploit our work to provide a
SPARQL interface over an optimized property graph schema.

Recently, works such as [5], [8], [42], [43] address a
similar problem in the context of property graphs. GRFu-
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sion [43] focuses on filling the gap between the relational and
the graph models rather than optimizing the graph schema
to achieve better query performance. Szárnyas et al. [42]
propose to use incremental view maintenance for property
graph queries. However, their approach can only support a
subset of property graph queries by using nested relational
algebra. SQLGraph [5] and Db2 Graph [8] introduce a physical
schema design that combines relational storage for adjacency
information with JSON storage for vertex and edge attributes.
However SQLGraph and Db2 Graph also focus on physical
schema design which only targets on the relational databases.
Materialized views [44], [45] are also introduced to answer
graph pattern queries. Views are either given as inputs or
generated based on query workloads. Then a subset of views
are chosen to answer a query. The optimized schema generated
from our approach can be considered as a view on the original
property graph, which can be consumed by their technique.

VII. CONCLUSIONS

To the best of our knowledge, our ontology-driven approach
is the first to address the property graph schema optimization
problem for domain-specific knowledge graphs. Our approach
takes advantages of the rich semantic information in an on-
tology to drive the property graph schema optimization. The
produced schemas gain up to 3 orders of magnitude graph
query performance speed-up compared to a direct mapping
approach in two real-world knowledge graphs.
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