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World of Al-assisted Healthcare

e Medical ontologies, many developed by experts, help define, standardize and organize
concepts in the medical domain, which are foundational to support healthcare
applications (such as clinic documentation, medical conversational system, Q&A).
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Data-to-Ontology Matching
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Data-to-Ontology Matching

e Large-scale clinical documents and medical record in

databases " standard Medical Ontology 1 |

e Map database schema/tables to standard ontologies v
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Problem Statement

e Definitions:
o Medical database D, represented by a relational schema S and its instances I
o Medical ontology O = (C, R, T), where C is the set of concepts, R is the set of
relations, and T =C x R x Cis the set of triplets

e Problem Formulation:
o Given a medical database D and a standard medical ontology O, the data to
ontology matching problem is to find a set of matches M that map the schema S
of D to the concepts in O, suchthat{(p,q)€eSx0|p=q}.
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MEDTO System Architecture
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Goal: As a “cold-start” problem:
How to create an ontology from a
medical database?

U

Solution: Ontology bootstrapping
from medical databases

e — |
.% Datat)ases
-

-

Phase I = |
Data-to-ontology

Bootstrapping

~

( Ontology Creation
v

N

( Ontology Enrichment !

J/

J/

(8

;

Standard
O O Ontology
|
_________ -+ -
|
y  |escTTTT TSSO TS TS N
: Hyperbolic Graph Conv Networks |
Phase II | ,‘_—_—_—_-_-_-_-_-_-_-_-_-_-_______"\
Ontology Matching : I Heterogenous Graph Networks :
I ——————————————————
|
I Output *
v utpu
Matches CO_O O_O)




Ontology Bootstrapping

e Goal: Derive an ontology from a medical dataset
stored in a relational database

Relational Tables

e Steps: (1) Ontology creation; (2) Ontology e =
Enrichment Standard Ontology
e Creation step: Record (32)
o  Concepts: Create a concept for each table with its @
representative columns as data properties Derived Ontology
o Relations: Add a relation between two concepts based on Insuan O\
primary key-foreign key relationships between tables ore PR D) Q-0
e Enrichment step: FK/PK fnsutin A 0
o Concept augmentation: Add instance-level concepts icustays (cey)_ frrcy
(entries in table) to the created ontology, if instance-level . Inetancetovel
concepts have their matches in the standard ontology Concepts Concepts

o Neighborhood augmentation: Populating edges from
standard ontology via pre-aligned seed concepts



Phase II: Ontology Matching
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Matching Ontologies: Challenges

e After data have been transformed to one ontology, the next step is to match such ontology 0, to
high-quality standard ontologies O, .

e Challenge: Learn comprehensive representations from the descriptive text features, hierarchical
taxonomy features (normally defined in “Is-A” relation)and semantic relational facts between
concepts in the ontology, which are important to identify the match between two ontologies.
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Ontology Matching

e Our solution: Hyperbolic Graph Convolution Module + Heterogeneous Graph Module
o Focus on ontology hierarchical structures and relational structures
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Hyperbolic Graph Convolution Layer

e Goal: Better capture concept hierarchies in medical ontologies by embeddings in the
hyperbolic space
e Adopted from Hyperbolic Graph Convolutional Neural Network (HGCN) [1]
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[1] I. Chami, Z. Ying, C. Ré, and J. Leskovec. Hyperbolic graph convolutional neural networks. In NeurIPS, pages 4869-4880, 2019.



Heterogeneous Graph Layer

Goal: Model the multi-relational non-hierarchical relationships in the ontologies
Enhance R-GCN [2] by using neighbor’s top-level ancestor concepts (meta-type) in the
ontology (e.g., “kidney” — “body structure”) as “global features”

e Both local and global context information are encoded by neighborhood aggregation
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[2] M. Schlichtkrull, T. N. Kipf, P. Bloem, et. al. Modeling Relational Data with Graph Convolutional Networks. CoRR abs/1703.06103, 2017.




Matching and Training

e The final matching module takes pairs of concept embeddings and outputs prediction
score, implemented by MLP (or Transformer encoder).
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Datasets UCLA

e Two medical databases: MIMIC-III [3] and MDX (IBM Micromedex)
o MIMIC-III: Anonymized health-related record of 4000+ patients and their stays in ICU,
including 21 tables on patient tracking, ICU data and hospitalization procedure.
o MDX: A medical database of IBM Micromedex that contains 59 tables on drugs, adverse
effects, indications, findings, etc.
e Three standard medical ontologies provided in OAEI Large BioMed Track. Stats:
o FMA [4]: Declarative knowledge of human anatomy. — 78.9k concepts and “is-A” relations.
o NCI [5]: Terminologies for clinical care and other basic research. - 56.9k concepts, 85.3k
relations of 80 types (59.7k are “is-A”).
o SNOMED CT [6]: A collection of medical terms providing synonyms and definitions used in
clinical reporting. » 76.7k concepts, 109.9k relations of 5 types (105.6k are “is-A”)

[3] A. E. Johnson, T. J. Pollard, L. Shen, et al. Mimic-iii, a freely accessible critical care database. Scientific data, 3:160035, 2016.

[4] C. Rosse and J. L. V. M. Jr. A reference ontology for biomedical informatics: the foundational model of anatomy. J. Biomed. Informatics,
36(6):478-500, 2003.

[5] S. de Coronado, M. W. Haber, N. Sioutos, M. S. Tuttle, and L. W. Wright. NCI thesaurus: Using science-based terminology to integrate cancer
research results. In MEDINFO, volume 107, pages 33-37, 2004.

[6] K. Donnelly. Snomed-ct: The advanced terminology and coding system for ehealth. In Stud Health Technol Inform, volume 121, pages 279-290,
2006.


https://physionet.org/content/mimiciii-demo/1.4/
https://www.ibm.com/products/micromedex-with-watson
http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/2020/

Data-to-Ontology Matching

e Medical databases: MIMIC-III and MDX

e Baselines: AML[7], LogMap[8], RDGCN[9] (SOTA from OpenEA)

Table: Matching MIMIC-III and MDX to SNOMED CT

Dataset MIMIC-III & SNOMED MDX < SNOMED
Metric Hits@10 Hits@30 Hits@10 Hits@30
AML 0.06 (1/15)  0.13 (2/15) 0.16 (3/19) 0.26 (5/19)
LogMap 0.20 (3/15)  0.20 (3/15) 0.21 (4/19) 0.37 (7/19)
MTransE 0.00 (0/15)  0.00 (0/15) 0.05 (1/19) 0.05 (1/19)
GCN-Align | 0.20 (3/15)  0.33 (5/15) 0.32 (6/19) 0.42 (1/19)
__RDGCN | 027(4/15) 040 (6/15) | 0.32(6/19)  0.58(11/19)
MEDTO 0.47 (7/15) 0.60 (9/15) | 0.42(8/19) 0.79 (15/19)

_________________________________________________________________________________

Significant performance
improvement (>50% on MIMIC-
IIT & >25% on MDX) compared
to all baselines.

[7] D. Faria, C. Pesquita, E. Santos, M. Palmonari, I. F. Cruz, and F. M. Couto. The agreementmakerlight ontology matching system. In OTM, pages
527-541, 2013.
[8] E. Jiménez-Ruiz and B. C. Grau. Logmap: Logic-based and scalable ontology matching. In ISWC, pages 273-288, 2011.

[9] Y. Wu, X. Liu, Y. Feng, Z. Wang, R. Yan, and D. Zhao. Relation-aware entity alignment for heterogeneous knowledge graphs. In IJCAI, pages
5278-5284, 2019.



Ontology-to-Ontology Matching

e Datasets: FMA, NCI and SNOMED from OAEI Challenge 2020 (all are standard medical
ontologies) = evaluate the ontology matching component of MEDTO

e Baseline: Rule-based matchers (AML, LogMap), GNN-based KG entity alignment (OpenEA
benchmark: MTransg, GCN-Align, RDGCN, etc.)

Better results over KG alignment and comparative
performance over well-developed AML/LogMap

Table: Ontology matching on OAEI dataset

Datasets FMA-NCI FMA-SNOMED NCI-SNOMED
Metrics p R F1 | MRR p R F1 | MRR P R F1 | MRR
AML 0.942 0.899 0920 | - | 0902 0729 0.806 - 0.890 0.744  0.810 =
LogMap 0.916 0.895 0.905 - 0791 0.850 0.819 | - 0.897 0.732  0.805 -
MTransE 0.627 0.640  0.633 | 0.416 | 0.505 0.475 0.490 | 0.372 | 0.254 0.378 0.304 | 0.349
GCN-Align 0.813 0.783 0.798 | 0.561 | 0.763  0.729  0.746 | 0.526 | 0.745 0.775 0.760 | 0.467
______ RDGCN _____| 0.855___0.843___0.849_| 0.761_| 0.824_ __0.752___0.786 | 0.683 | 0.852___0.782 _ 0.816 | 0.679 __
! MEDTO 0.944 0874 0.908 | 0.783 | 0.871 0.762 0.813 | 0.690 | 0.901 0.802 0.849 | 0.704 |
| MepTO (W/0o HYP) | 0.867 0.775 0.818 | 0.724 | 0.787 0.653 0.714 | 0.540 | 0.835 0.759 0.795 | 0.595 |
| MepTo (w/o HET) | 0927 0.851 0.887 | 0.763 | 0.863 0747 0.801 | 0.676 | 0.881 0.807 0.842 | 0.688 !

Both hyperbolic graph layers and heterogeneous
graph layers contributes to the performance gain.



Hyperparameter Study

e Hyperparameters: (1) number of GNN layers in MEDTO matching; (2) training ratio of
seed matches.
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Case Study: MIMIC-III

e MEDTO finds more matches over MIMIC-III Tables compared
to AML/LogMap.
e Ambiguous terms are challenging
o Example: “outputevents”, which specifically refers fluid output in
most cases, which is captured by MEDTO. However, it mismatches
with process output or output measurement in other models.
e MEDTO may sometimes fails
o Lack of instance-level concepts during ontology bootstrapping
o Sets of introduced instance-level concepts do not correctly reflect
the content of table.

(Flmd Output) (Process Output) (LaboratoryTest) ( Substances

O (Table outputevents") ® O ( Table “labevent” ) ®

e e !
Urine out | Cholesterol
:1 Dialysis out i : 1 { Hemoglobin :
| X ; | | |
I ( Hemodialysis )I I Estradiol I
i ( Effluent - | I ( Parathyroid |
| Angio ! | Hormone !
| ouput ) | | (ol ) |

Table: Examples of MIMIC-III and
MDX matching results

MIMIC-III Tables | AML LogMap RDGCN | MEDTO
patient v Ve e v
prescriptions v X v v
caregivers X v X Ve
services X v v v
outputevents X X v v
icustays X X X v
chartevents X X X X
labevents X X X X
MDX Tables AML LogMap RDGCN | MEpTO
AdverseEffect v v v v
Dosage v v v v
DrugFoodInteraction X v v v
Contralndication X X v v
DoseAdjustment X X X v
DrugRoute X X X X
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Summary & Future Directions

e Summary
o End-to-end framework MEDTO for medical data to ontology matching
o MEDTO creates a semantically enriched ontology from a given medical database
and matches the derived ontology to standard ontologies
GNN-based ontology matching module capturing two facets of an ontology
o Effectiveness shown on real-world medical databases

e Future Directions
o Support more relations in an ontology (e.g., disjoint, equivalence statements, etc.)
o Learn representations with ontological constraints applied to improve match

predictions



Scan the QR-code for more
paper details!

Thank you!

Contact: jhao@cs.ucla.edu, chuan.lei@ibm.com




