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ABSTRACT

Medical ontologies are widely used to describe and organize med-
ical terminologies and to support many critical applications on
healthcare databases. These ontologies are often manually curated
(e.g., UMLS, SNOMED CT, and MeSH) by medical experts. Med-
ical databases, on the other hand, are often created by database
administrators, using different terminology and structures. The
discrepancies between medical ontologies and databases compro-
mise interoperability between them. Data to ontology matching
is the process of finding semantic correspondences between ta-
bles in databases to standard ontologies. Existing solutions such as
ontology matching have mostly focused on engineering features
from terminological, structural, and semantic model information
extracted from the ontologies. However, this is often labor inten-
sive and the accuracy varies greatly across different ontologies.
Worse yet, the ontology capturing a medical database is often not
given in practice. In this paper, we propose Medto, a novel end-
to-end framework that consists of three innovative techniques: (1)
a lightweight yet effective method that bootstrap a semantically
rich ontology from a given medical database, (2) a hyperbolic graph
convolution layer that encodes hierarchical concepts in the hyper-
bolic space, and (3) a heterogeneous graph layer that encodes both
local and global context information of a concept. Experiments on
two real-world medical datasets matching against SNOMED CT
show significant improvements compared to the state-of-the-art
methods. Medto also consistently achieves competitive results on
a benchmark from the Ontology Alignment Evaluation Initiative.
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1 INTRODUCTION

In recent years, many medical ontologies have been created from
various healthcare resources, semi-automatically or by human ex-
perts. Medical ontologies define, standardize and organize con-
cepts in the medical domain, which provide valuable knowledge
to support many healthcare applications, such as medical content
browsing, clinical documentation, and evidence-based healthcare.
Examples of medical ontologies include International Classification
of Diseases (ICD), Unified Medical Language System (UMLS), and
Systematized Nomenclature of Medicine-Clinical Terms (SNOMED
CT). Ontologies are widely used in data integration [8] and query
federation to provide standard semantics across multiple systems.
They are also used to enhance answers for medical databases using
techniques known as Ontology-Based Data Access (OBDA) [41].

Much of the literature in OBDA is devoted to the study of query
answering under the assumptions that the ontology is available
and the mappings between the database and the standard ontology
have already been provided. However, we observe that these as-
sumptions do not necessarily hold in real-life medical applications.
A conversational system [29] that we built for the medical database
of IBMMicromedex®, used by medical experts (e.g., doctors, nurses,
pharmacists), revealed that the database was not designed with
a target ontology and there was no mapping between the tables
of the database and any known medical ontologies like UMLS or
SNOMED CT. We also observe a similar issue on public medical
datasets such as MIMIC-III [17], in which some tables and the asso-
ciated columns are named with abbreviations or colloquial terms.
These two use cases show the need for an end-to-end system that
maps the medical database to standard medical ontologies, such
that the downstream applications (e.g., OBDA) can benefit from
the standard terminologies and vocabularies, discover additional
relationships, and answer semantically rich queries.
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There have been many efforts devoted to ontology matching [11,
16, 20], with the goal of finding a mapping between two given
ontologies. Ontology matching is only part of the problem we are
trying to address in this paper, namely data to ontology matching.
When there is no ontology associated with a given database, we
need to create an ontology describing the data as a first step, before
we can apply ontology matching.

Most of the ontology matching work, such as LogMap [16] and
AML [11], rely on logical reasoning and rule-based methods to
extract various sophisticated features from the ontologies. These
terminological and structural features are then used to compute
ontological concept similarities that drive the ontology matching.
However, these features in one ontology often do not transfer in
others. Consequently, the accuracy and robustness of ontology
matching based on different features vary greatly with different
medical ontologies to be matched [20]. Worse yet, these solutions
assume that the given ontologies are carefully crafted, which often
fall short of the requirements for data to ontology matching.

Recently, graph representation learning [14, 19] has emerged
as an effective approach to learn vector representations for graph-
structured data. The representation of a node is learned by recur-
sively aggregating the representations of its neighboring nodes.
Several studies [34, 39, 40] have exploited graph neural networks
(GNNs) for embedding-based entity alignment as similar entities
usually have similar neighborhoods in knowledge graphs (KGs).
Although existing GNN-based methods have achieved promising
results on entity alignment in KGs, they are still facing three critical
challenges when applied to data to ontology matching.

Standard Medical Ontology 2

Clinical 

finding
Procedure

isA

isA

Renal 

procedure

Renal dialysis

isA

Hemo-

dialysis

isA

affects

Table: “Procdr”

Kidney 

failure

Standard Medical Ontology 1

Kidney impairment
Kidney 

structure

Measurements of 

renal function

isA

interprets

finding site

Kidney 

structure

treatment

Renal failure

Disease

Medical Database

Renal disease

isA

isA

Table: “Diagns”

Severe

Critical

Severe

Calyceal fistula

Renal Disfunction

Pyelitis

C1

C2

C3

C1

C2

Embolization surgery

HD - Haemodialysis

#101

#102

Figure 1: Example of data to ontology matching.

First, data to ontology matching often suffers from a cold-start
problem, where a semantically rich ontology capturing a given
medical database does not exist. One can generate an ontology
from the relational database [24] only using its metadata. However,
we argue that if we enrich the ontology by using instance-level
information from the database, and incorporate a richer set of
semantic relationships, the derived ontology can be matched to
the standard ontology with higher precision. To overcome this
cold-start problem, a bootstrapping process is necessary.

Second, one distinct characteristic of medical ontologies, com-
pared to the open-domain knowledge graphs like DBpedia [23] and

YAGO [32], is their deep domain specialization. These ontologies
often have rich hierarchical top-down structures, which systemati-
cally organize medical concepts into categories and subcategories
of different levels from general to specific. Figure 1 shows two
snippets of medical ontologies. The hierarchical (through “isA” rela-
tions) neighborhood of “kidney failure” is very different from other
types of relations. Capturing such hierarchical structures separately
would help identify matching concepts and improve the accuracy
of ontology matching.

Third, standard medical ontologies often are non-isomorphic in
the local neighborhood structures of a concept from the one of a
derived ontology. The rich and complex vocabularies, abundant
sources of domain knowledge, and different modeling views all
contribute to such non-isomorphism greatly. Fortunately, many
medical ontologies have top-level concepts provided by domain
experts and such concepts provide a global context for matching
concepts. In Figure 1, the concept “clinical finding” is the top-level
category of “renal failure”. This helps us differentiate “renal failure”
from other concepts such as “renal dialysis”, which belongs to the
“procedure” category. Motivated by the fact that the semantically
related latent information can appear in these top-level concepts,
the aggregated neighborhood of a concept should include not only
its local neighbors, but also the concepts with its global information.

To cope with these challenges, we propose a medical data to
ontology matching (Medto) framework based on graph represen-
tation learning. The underlying idea is to first create and enrich a
source ontology from the given medical database, and then embed
both enriched and standard medical ontologies into two representa-
tions (i.e., hierarchical and non-hierarchical views) that are comple-
mentary to each other. Both representations are jointly optimized
to improve the ontology matching capabilities. Our contributions
are listed as follows:

•We propose an end-to-end frameworkMedto for data to on-
tology matching. Medto first bootstraps an ontology based on a
given medical database, and then learns and unifies hierarchical and
non-hierarchical representations of two ontologies for matching.

• We design a lightweight yet effective method to create and
enrich an ontology from the metadata of a medical database with
rich semantic information from its instance data.

•We employ hyperbolic graph convolution layers to encode the
parent and child concepts of each concept in the hyperbolic space,
capturing the hierarchical characteristics in an ontology.

• To enrich the features of each concept, we introduce heteroge-
neous graph layers to incorporate both the local structure and the
global context into concept embeddings.

• Our experiments on matching two real-world medical datasets
to SNOMED CT show that Medto significantly outperforms the
state-of-the-art methods. We also evaluate Medto on a benchmark
from the Ontology Alignment Evaluation Initiative (OAEI), showing
that Medto consistently achieves state-of-the-art results.

2 PRELIMINARIES AND SYSTEM OVERVIEW

2.1 Graph Neural Networks

Graph neural networks (GNNs) are deep learning based methods
that operate on graph-structured data. It has been shown that GNNs
are effective for various applications, such as node classification,



link prediction and community detection. A generalized frame-
work [1] of GNNs consists of a graph encoder and a graph decoder,
taking as input an adjacency matrix 𝐴, as well as optional node
and edge features 𝑋 = {𝑋𝑁 , 𝑋𝐸 }. A typical graph encoder parame-
terized by Θenc combines the graph structure with node and edge
features to produce node embedding matrix as:

𝑍 = ENC (𝐴,𝑋,Θenc) . (1)

The graph encoder uses the graph structure to propagate and aggre-
gate information across nodes and learn embeddings that encode
local structural information. A graph decoder is often used to com-
pute similarity scores for all node pairs for downstream tasks on
node, edge, or graph level.

Depending on the graph properties, a wide variety of GNNs
have been developed. Representative examples include a message-
passing neural network R-GCN [31] and a metapath-based neural
network HAN [38] for heterogeneous graphs, non-Euclidean hy-
perbolic GCN [2] for hierarchical graphs, and EvolveGCN [27] for
dynamic graphs. More details can be found in Section 6.

2.2 Problem Formulation

Definition 2.1. A medical database D is represented by a rela-
tional schemaS and its instance I. A schema is a finite collection of
relation symbols. Each relation symbol has a specified arity, which
intuitively corresponds to column names. An instance I over S is
a collection of relations whose arities match those of the relation
symbols in 𝑆 .

Definition 2.2. A medical ontology is represented as O = (C, R,
T ), where C is the set of concepts, R is the set of relations, and T
= C × R × C is the set of triplets.

Problem definition. Given a medical database D and a stan-
dard medical ontology O, the data to ontology matching prob-

lem is to find matches M that map the schema S of D to O, such
that {(𝑖 , 𝑗 ) ∈ S × O | 𝑖 ≡ 𝑗 }.

Note that a single standard medical ontology may only partially
match with a medical database. In this case, multiple medical ontolo-
gies can be used to match against the given database in sequence.
In essence, the challenges of matching data to ontology remain
due to the semantically poor schema of the medical database and
the complex structure of the medical ontology. Hence, we need to
design an end-to-end system addressing these challenges.

2.3 System Overview

As depicted in Figure 2, we propose a framework,Medto, which
consists of two phases: data to ontology bootstrapping and on-

tology to ontologymatching. Given a medical database, the data
to ontology bootstrapping phase first derives an ontology from its
schema and data instances. It also bootstraps seed matches between
the derived and standard ontologies by labeling highly confident
matches and adding them into training data. The ontology to on-
tology matching phase takes as input the derived ontology, the
standard ontology, as well as the seed matches (either provided
or bootstrapped). Structures of both ontologies are captured via

graph neural networks (GNNs) for structural representation learn-
ing. Moreover, the lexical semantics of the concepts in both ontolo-
gies is employed, providing complementary signals for ontology
matching.
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Figure 2:Medto system architecture.

3 ONTOLOGY BOOTSTRAPPING FROM

MEDICAL DATABASE

In this section, we examine the ontology bootstrapping problem.
Specifically, we first address the “cold-start problem”, i.e., the task
of creating an ontology from a medical database. Then, we describe
our novel concept augmentation and neighborhood augmentation
strategies to enrich the derived ontology.

3.1 Ontology Creation

To infer an ontology (i.e., concepts and their relationships relevant
to the domain) from a relational database, we leverage a variety of
information from both database schema and data instances.
Concepts and properties.We map each table in a medical data-
base to a concept, and represent columns in each table as data
properties of that concept. Note that not all columns are selected,
as they may not be semantically meaningful. Specifically, primary
and foreign keys are not included, because they are designed for
uniquely identifying each row in the table. Moreover, columns of
non-string types (e.g., numeric, date, etc.) are not chosen either,
since most standard medical ontologies only contain concepts ex-
pressed in strings.
Relation inference. Relation inference is non-trivial as it depends
on the primary key and foreign key interactions, and quite often
these keys are not specified in the databases, especially when the
database is created from raw medical literature. Therefore, we fol-
low the approach suggested in [24], which enables the inference of
functional relations as well as concept hierarchies (i.e., isA relation).

In brief, we first identify primary and foreign keys by leveraging
data statistics, such as distinct values. If the number of distinct
values of the column and the total row count in the table are identi-
cal, we assert a primary key constraint. Similarly, for foreign keys,



we check if the rows in the join of the two tables based on the
selected columns are equal to the total rows of the referring table.
Furthermore, we consider tables with exactly two columns, both
acting as foreign keys to different tables in the schema, as inter-
mediate tables. For every non-intermediate table 𝑅, we generate
a functional relation that connects the concept 𝐶 generated from
𝑅 to another concept 𝐶 ′ generated from the table 𝑅′, if one of 𝑅’s
column is a foreign key referring to 𝑅′. If there is a table 𝑅1 with
a single column, which is a foreign key referring to a table 𝑅2, we
consider the concept𝐶1 generated from 𝑅1 as subsumed by the con-
cept 𝐶2 generated from 𝑅2. In this case, we assert an isA relation
between two concepts corresponding to these two tables. Finally,
the resulting ontology O1 is stored in OWL2 format.

3.2 Ontology Enrichment

Although the created ontologies capture schema-level details of
the underlying data, they are far less semantically rich than the
standard ontologies created by experts. To alleviate this issue, we in-
troduce two effective augmentation heuristics to enrich the derived
ontology O1 from the medical database.
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Table-2

Table-1

Table-3

Relational Tables

O1

O2

High-quality 

Standard Ontology

Derived Ontology

Table-1Schema

Record

Figure 3:Medto ontology enrichment.

Concept augmentation. For each distinct value1 in relational ta-
bles, we add an instance-level concept in O1, and connect these new
concepts to the existing schema-level ones via a new relationship
“instance of”. The advantages of concept augmentation are twofold.
First, it greatly enriches O1 with the available information from the
relational database. Second, it enables us to bootstrap the seed con-
cept matching between two ontologies using exact string matching
algorithms. Other approximate string matching algorithms (e.g.,
edit distance based or embeddings based) or ML-based methods [33]
can be plugged in as well, depending on the accuracy requirement.
Neighborhood augmentation.We also add edges among the pre-
aligned seed concepts in O1. Specifically, if two concepts 𝑖 and 𝑗 of
O2 have an edge, while their counterparts 𝑖 ′ and 𝑗 ′ in O1 do not, we
add an edge between 𝑖 ′ and 𝑗 ′. The goal is to fill the semantic gap
between O1 and O2 by adding the missing structural information.

With the augmented ontology,Medto can effectively learn the
ontology representation and align it with O2. To match a schema-
level concept in O1 with the ones in O2, we employ graph pooling
1If the number of distinct values is greater than a threshold, we use sampling to avoid
exploding the ontology. We omit the details due to space constraints.

to aggregate the embeddings of instance-level concepts that belong
to the schema-level concept. Different graph pooling methods [14,
42] have been investigated for different scenarios. We find that
the element-wise mean-pooling is sufficient to capture different
information across the neighborhood set.

Finally, we feed both the enriched O1 and a standard ontology
O2 into our novel graph neural networkMedto to find the matches
between them (Figure 3).

4 ONTOLOGY MATCHING

4.1 Input Embeddings of Medical Concepts

The concept names in a medical ontology consist of sequences of
words. One can leverage deep learning based embedding methods
such as BERT [6] or ELMo [28] to produce 𝑑in-dimensional word
embeddings for each concept. In this work, as the starting point,
we choose BioBERT, a high-quality medical language model pre-
trained on PubMed abstracts and clinical notes (MIMIC-III) [22].
The resulting input embedding is used as the initial state (ℎ0,𝐸 )
of each concept, where 𝐸 indicates that the embeddings are in a
Euclidean space.

4.2 Hyperbolic Graph Convolution Layer

Conventional GNNs embed nodes into Euclidean space, which has
been shown to incur a large distortion with hierarchical struc-
tures [26]. Hence, we use a hyperbolic embedding space, since it is
amenable for learning concept hierarchies. Compared to Euclidean
spaces, hyperbolic spaces better capture the hierarchical characteris-
tic of ontologies. In this paper, we adopt a specific model, hyperbolic
graph convolutional neural network (HGCN) [2], which leverages
both the expressiveness of GNNs and hyperbolic geometry to learn
node representations for graphs with hierarchical structures.

Hyperbolic graph convolution layer first establishes mapping
between tangent (Euclidean) and hyperbolic spaces by exponential
and logarithmic maps. We use the exponential map to project the
node embeddings from a Euclidean space to a hyperbolic space,
and logarithmic map reverses the map back to the Euclidean space.
Hence, the initial embedding ℎ0,𝐸

𝑖
of node 𝑖 to ℎ0,𝐻

𝑖
is:

h0,𝐻
𝑖

= exp𝐾o
(
0, h0,𝐸

𝑖

)
, (2)

where 𝐾 determines the constant negative curvature −1/𝐾 (𝐾 > 0)
and o denotes the origin in the hyperbolic space. For hyperbolic
feature transformation from one layer to the next layer, we follow
the definition below:

h𝑙,𝐻
𝑖

=

(
W𝑙 ⊗𝐾𝑙−1 h𝑙−1,𝐻

𝑖

)
⊕𝐾𝑙−1 b𝑙 (3)

where ⊗ and ⊕ are hyperboloid matrix multiplication and addition,
respectively, as defined in [2].

Similar to GCN, our hyperbolic graph convolution layer aggre-
gates features from a node’s local neighborhood. Since there is no
notion of vector space structure in a hyperbolic space, we have to
map embeddings to the tangent space, perform the aggregation
in the tangent space, and then map the aggregated embeddings
back to the hyperbolic space. Furthermore, we utilize an attention
mechanism to learn the importance of each neighboring node and
aggregate neighbors’ embeddings according to their importance.
Given hyperbolic embeddings (ℎ𝐻

𝑖
, ℎ𝐻
𝑗
), the attention weight𝑤𝑖 𝑗
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is:
𝑤𝑖 𝑗 = Softmax

(
mlp

(
log𝐾o

(
h𝐻𝑖

)
| | log𝐾o

(
h𝐻𝑗

)))
, (4)

and the hyperbolic attention-based aggregation is:

AGG𝐾 (h𝐻 )𝑖 = exp𝐾
h𝐻
𝑖

©«
∑
𝑗∈N(𝑖 )

𝑤𝑖 𝑗 log𝐾h𝐻
𝑖

(
h𝐻𝑗

)ª®¬ , (5)

where | | is a concatenation operation, and N(𝑖) = { 𝑗 : (𝑖 , 𝑗 ) ∈ RisA}
denotes a set of parents of concepts 𝑖 ∈ C. Finally, we use a non-
linear activation function to learn non-linear transformations by
first applying the Euclidean non-linear activation in the tangent
space and then mapping back to the hyperbolic space:

𝜎⊕𝐾𝑙−1,𝐾𝑙 (h𝐻 ) = exp𝐾𝑙o
(
𝜎

(
logo𝐾𝑙−1

(
h𝐻

)))
. (6)

The 𝑙-th layer of a hyperbolic graph convolution layer is:

h𝑙,𝐻
𝑖

= 𝜎⊕𝐾𝑙−1,𝐾𝑙
(
AGG𝐾𝑙−1

(
h𝑙,𝐻

)
𝑖

)
, (7)

where −1/𝐾𝑙−1 and −1/𝐾𝑙 are the hyperbolic curvatures at the
(𝑙 −1)-th and 𝑙-th layer, respectively. The hyperbolic embeddings at
the last layer can be used to predict the concept similarity. We use
the following sigmoid function [2] to compute probability scores
for edges:

LH = 𝑝 ( (𝑐𝑖 , 𝑐 𝑗 ) ∈ C) =
{
exp

[
1
𝑡

(
𝑑𝐾

(
h𝐻𝑖 , h

𝐻
𝑗

)2
− 𝑟

)]
+ 1

}−1
, (8)

where 𝑑𝐾 (·, ·) is the hyperbolic distance and 𝑟 and 𝑡 are hyper-
parameters.

4.3 Heterogeneous Graph Module

To capture the non-hierarchical structure in an ontology, conven-
tional GNNs such as R-GCN [31] can be applied, as it models multi-
relational graphs. Specifically, R-GCN distinguishes different neigh-
borswith relation-specificweightmatrices. In the 𝑙-th convolutional
layer, each representation vector is updated by accumulating the
vectors of neighboring nodes through a normalized sum. Formally,

the 𝑙-th layer of R-GCN is:

h𝑙,𝐸
𝑖

= 𝜎
©«W𝑙

0h𝑙−1,𝐸
𝑖

+
∑
𝑟∈R

∑
𝑗∈N𝑟

𝑖

1
𝑐𝑖,𝑟

W𝑙
𝑟h𝑙−1,𝐸
𝑗

ª®®¬ , (9)

where𝑊 𝑙
0 is the weight matrix for the node itself and𝑊 𝑙

𝑟 is used
specifically for the neighbors having relation 𝑟 , i.e., N𝑟

𝑖
, R is the

relation set and 𝑐𝑖,𝑟 is for normalization.
One limitation of this approach is that it focuses only on the

local context of a concept and ignores the position of the concept
within the broader context of the entire ontology. As described
in Section 1, the top-level concepts in an ontology often provide
additional semantic information which can influence how the final
embeddings are aggregated. In Figure 5, the local context of “renal
failure” includes two concepts, “measurements of renal function”
and “kidney structure”, connecting to “renal failure”. In addition to
the local context, we also incorporate the “global” context described
by the top-level concepts, such as “clinical finding”, “body structure”,
and “procedure”.

Renal failure
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structure

Measurements of 

renal function

interpretsfinding site

Body 

Structure

Clinical 

finding

Procedure

Local

Figure 5: Local and global contexts of “renal failure”.

The key idea is to incorporate a set of “global” contexts and enrich
each node’s feature with its corresponding global embeddings. We
denote a node 𝑖’s global embedding at 𝑙-th layer as g𝑙,𝐸

𝑖
. We replace

the node feature h𝑙−1,𝐸
𝑖

with its enriched version h𝑙−1,𝐸
𝑖

| |g𝑙−1,𝐸
𝑖

and
similarly replace each node feature of its neighbors h𝑙−1,𝐸

𝑗
with

concatenated h𝑙−1,𝐸
𝑗

| |g𝑙−1,𝐸
𝑗

in Eq. 9. Note that in a medical ontology,
a concept may belong to multiple top-level concepts. In this case,



we take an element wise mean of all global embeddings to fully
capture the global context. Such combined embeddings help us to
learn better representations from more neighborhood information.

Following the convention, we optimize for cross-entropy loss to
push the model to score observable edges higher than the negative
ones:

LE =
∑
𝑟 ∈R

∑
𝑖, 𝑗 ∈C

𝑤𝑟𝑖 𝑗 log
exp

(
(h𝐸
𝑖
)T𝐴𝑟h𝐸

𝑗

)
∑
𝑖′∈C exp

(
(h𝐸
𝑖′)T𝐴𝑟h𝐸

𝑗

) , (10)

where 𝑤𝑟
𝑖 𝑗

= 1(𝑖, 𝑗 ∈ R𝑟 ) and negative samples are generated by
replacing 𝑖 with a random node 𝑖 ′.

4.4 Matching Module

Based on the learned concept representations h𝐻 and h𝐸 from the
hyperbolic graph convolution and the heterogeneous graph layers,
we merge the two through concatenation to unify the representa-
tion of a concept h. Then, the matching module𝑀 (·) takes pairs of
concept embeddings from O1 and O2 and outputs the prediction
score. We use the straightforward multi-layer perceptron (MLP)
with one hidden layer, defined as follows:

𝑀

(
h𝑈𝑖 , h

𝑈
𝑗

)
= 𝜎

(
W2 · 𝛾

(
W1

(
h𝑈𝑖 | |h𝑈𝑗

)
+ b1

)
+ b2

)
, (11)

where W1, W2, b1, b2 are parameters, 𝜎 is the sigmoid function,
and 𝛾 is the LeakyReLU activation function. One could also use
a multi-head attention-based transformer encoder [36] module to
replace the MLP.

Weminimize the contrastive matching loss to let the embeddings
of known matched concepts (positive) have a small distance while
the unmatched (negative) pairs have a relatively large distance:

L𝑀 =
∑

(𝑖,𝑗 )∈M+
𝑀 (h𝑖 , h𝑗 ) +

∑
(𝑖′, 𝑗′)∈M−

𝜔
[
𝜆 −𝑀

(
h𝑖′ , h𝑗′

) ]
+ , (12)

where M+ denotes the seed matches between O1 and O2, M−

denotes a set of negative samples, 𝜆 is the margin value, 𝜔 is a
balance hyper-parameter, and [·]+ = max(0, ·).

4.5 Training

Combining the hyperbolic graph convolution and heterogeneous
graph models together with the matching module, Medto mini-
mizes the final joint loss function:

L = L𝑀 + 𝛼1 ·
(
LH

O1
+ LH

O2

)
+ 𝛼2 ·

(
LE

O1
+ LE

O2

)
, (13)

where L𝑀 is the matching loss, L𝐻O1
(L𝐻O2

) and L𝐸O1
(L𝐸O2

) repre-
sent the losses of the hyperbolic graph convolution and heteroge-
neous graph models, respectively, and both 𝛼1 and 𝛼2 are positive
hyper-parameters to control the trade-off among three loss compo-
nents. We optimize all models with Adam [18] optimizer.

5 EXPERIMENTS

5.1 Datasets

We use the following datasets from the medical domain to evaluate
the performance of ourMedto framework.

MIMIC-III is a large database consisting of anonymized health-
related data of over forty thousand patients who stayed in critical

care units [17]. It contains 21 tables in 3 aspects including patient
tracking, ICU data, and hospital data.

MDX is a medical database of IBM Micromedex®2 that contains
information in 59 tables about drugs, adverse effects, indications,
findings, etc. It is manually curated from medical literature by
editorial staff.

For standard medical ontologies, we choose the ones provided
in the large BioMed track of OAEI3. This track consists of finding
alignments between three ontologies: the Foundational Model of
Anatomy Ontology (FMA), SNOMED CT, and the National Cancer
Institute Thesaurus (NCI).

FMA is an ontology for biomedical informatics that represents
a coherent body of explicit declarative knowledge about human
anatomy [30]. It consists of 78,984 concepts and 78,985 isA relations.

NCI provides reference terminologies for clinical care, transla-
tional and basis research, and public information and administrative
activities [5], which consists of 56,907 concepts and 85,332 relations
of 80 different types. 59,794 of them are isA relations.

SNOMED CT is a systematically organized collection of medi-
cal terms providing codes, terms, synonyms and definitions used
in clinical reporting [10]. It contains 76,730 concepts and 109,896
relations, of which 105,563 are isA.

Seed matches are provided by OAEI and we split them into train,
validation and test set as the positive samples. The negative samples
are uniformly sampled by modifying one of the concepts in the
positive sample pairs.

5.2 Compared Methods

To evaluate both phases of Medto, we compare our approach
against a variety of methods in different categories. For Medto
ontology bootstrapping phase, we choose the method introduced
in ATHENA [15, 24] as the baseline, which only utilizes the schema
information from a given database. For Medto ontology match-
ing phase, the baselines range from rule-based methods to recent
embedding-based entity alignment models. Specifically, LogMap
uses logic-based reasoning over the extracted features and casts
the ontology matching as a satisfiability problem. AML performs
ontology matching based on heuristic methods that rely on ag-
gregation functions. We select MTransE [4], GCN-Align [39], and
RDGCN [40]4 from recent embedding-based entity alignment meth-
ods. For ablation study, we develop three variants of Medto, i.e.,
Medto (w/o HYP) that does not capture the hierarchical informa-
tion in the hyperbolic space,Medto (w/o HET) that does not pay
attention to both local and global position information, and the full
modelMedto.

5.3 Implementation Details

The following hyper-parameters are used in the experiments. Each
training took 1000 epochs with a learning rate of 0.01. The embed-
ding dimension 𝑑 is set to 128 for all the comparative methods (if
applicable). The dimension of input embeddings is 𝑑in = 768. By
default, we stack 2 hyperbolic graph convolution and 2 heteroge-
neous graph layers inMedto. For the hyperbolic graph convolution

2https://www.ibm.com/products/micromedex-with-watson
3http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/2020/
4OpenEA library: https://github.com/nju-websoft/OpenEA

http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/2020/


decoder, we set 𝑟 = 2.0, 𝑡 = 1.0 (Eq. 8) and apply trainable curvature.
In the matching module, we set 𝜆 = 1.0 and 𝜔 = 0.1 (Eq. 12). We set
both balance hyper-parameters 𝛼1 and 𝛼2 to 1.0 in Eq. 13. We sam-
ple 10 negative samples for each pre-aligned concept pair. All the
learnable parameters are initialized by the Xavier initialization [13].
Following the convention of OAEI and entity alignment, we report
the precision, recall and F1 score to assess ontology matching per-
formance. In addition, we also report MRR (mean reciprocal rank),
higher scores indicating better performance.

5.4 Experimental Results

Main results. We evaluate Medto on both MIMIC-III and MDX.
For MIMIC-III, our domain experts identified 15 matching concepts
in SNOMED, among 21 tables. For MDX, 19 out of 59 tables have
their matches identified in SNOMED as well. Hence, we use these
identified matches as our ground truth. Following convention, we
report Hits@10 and Hits@30 results to assess ontology matching
performance.

Table 1: Matching MIMIC-III and MDX to SNOMED CT.

Dataset MIMIC-III⇔ SNOMED MDX ⇔ SNOMED
Metric Hits@10 Hits@30 Hits@10 Hits@30
AML 0.06 (1/15) 0.13 (2/15) 0.16 (3/19) 0.26 (5/19)

LogMap 0.20 (3/15) 0.20 (3/15) 0.21 (4/19) 0.37 (7/19)
MTransE 0.00 (0/15) 0.00 (0/15) 0.05 (1/19) 0.05 (1/19)
GCN-Align 0.20 (3/15) 0.33 (5/15) 0.32 (6/19) 0.42 (1/19)
RDGCN 0.27 (4/15) 0.40 (6/15) 0.32 (6/19) 0.58 (11/19)
Medto 0.47 (7/15) 0.60 (9/15) 0.42 (8/19) 0.79 (15/19)

As shown in Table 1, Medto substantially outperforms all base-
line methods. For MIMIC-III, the best performing baseline, RDGCN,
can only find 4 matches when Hits@10, whereasMedto finds 7 out
15 matches. The primary reason is the concept and neighborhood
augmentation we used to enhance the initially derived MIMIC-III
ontology. With instance-level concepts and hierarchical relation-
ships among them,Medto can leverage semantic information to
learn much better representations of the MIMIC-III ontology, re-
sulting in the performance gain. We observe similar results on the
MDX dataset; ourMedto finds 8 out of 19 matches compared to 3-6
matches found by other baselines, achieving superior performance.
Tables 2 and 3 show a subset of successful and failed cases from
both datasets.

Table 2: MIMIC-III-to-SNOMED result analysis (Hits@30).

MIMIC-III Tables AML LogMap RDGCN Medto
patient ✓ ✓ ✓ ✓

prescriptions ✓ ✗ ✓ ✓

caregivers ✗ ✓ ✗ ✓

services ✗ ✓ ✓ ✓

outputevents ✗ ✗ ✓ ✓

icustays ✗ ✗ ✗ ✓

chartevents ✗ ✗ ✗ ✗

labevents ✗ ✗ ✗ ✗

We observe two mistake patterns from Medto. The first type of
mistakes is caused by ambiguous semantic information. For exam-
ple, most instance-level concepts of “chartevent” are described by

different timestamps, which do not contribute to the bootstrapping
of seed matches between MIMIC-III and SNOMED at all. In fact,
Medto solely relies on the input embedding of “chartevent”, which
is not sufficient to locate the correct match in SNOMED.

Table 3: MDX-to-SNOMED result analysis (Hits@30).

MDX Tables AML LogMap RDGCN Medto
AdverseEffect ✓ ✓ ✓ ✓

Dosage ✓ ✓ ✓ ✓

DrugFoodInteraction ✗ ✓ ✓ ✓

ContraIndication ✗ ✗ ✓ ✓

DoseAdjustment ✗ ✗ ✗ ✓

DrugRoute ✗ ✗ ✗ ✗

The second type of mistakes still results from instance-level con-
cepts augmented in MIMIC-III. Even thoughMedto is able to lever-
age these concepts to bootstrap the seed matches, these matches do
not locate around the provided ground truth matches in SNOMED.
For example, most instance-level concepts of “labevents” find their
matches (e.g., “hemoglobin” and “cholesterol” ) under “substance”
concept in SNOMED. Consequently, Medto learns an incorrect
representation of “labevents” and mistakenly matches it to concepts
similar to “substance” rather than “laboratory test”. We observe
similar trends from MDX case as well.
Ontology bootstrapping results. As mentioned earlier, we eval-
uate the effectiveness of Medto ontology bootstrapping methods
against a baseline method introduced in ATHENA [15, 24], which
only utilizes the schema information of a database to create an
ontology. Medto matches 7 out 15, and 8 out of 19 over MIMIC-III
and MDX, respectively, when Hits@10, while ATHENA is only able
to match 3 out of 15, and 4 out of 19. Even when Hits@30, ATHENA
(4 out of 15 on MIMIC-III, and 5 out of 19 on MDX) is still beaten by
Medto substantially. The results clearly show thatMedto ontol-
ogy bootstrapping method is able to produce a semantically richer
ontology compared to the one generated by ATHENA. Having the
enriched ontology, the ontology matching phase can subsequently
identify more matching concepts from the standard ontology.
Ontology matching results. Table 4 summarizes the results of
ontology matching on three pairs of ontologies from OAEI datasets.
We observe that Medto outperforms the three representative base-
lines from entity alignment, with an average improvement of 4.7%
on F1 score and 2.5% on MRR. This indicates that entity align-
ment methods, designated for general-purpose knowledge bases
(e.g., Wikidata and DBpedia), are insufficient for matching domain-
specific medical ontologies with hierarchical structures. Medto
explicitly distinguishes and models the hierarchical information,
from other local and global structural features, leading to better
results on medical ontology matching.

Compared to the extensively developed rule-based approaches
(AML/LogMap),Medto achieves competitive results across all three
datasets. In particular, Medto outperforms both AML and LogMap
on NCI-SNOMED matching. It is the most challenging one among
the three matching tasks, since both NCI and SNOMED are more
complex than FMA.We also find that AML and LogMap heavily rely
on lexical features from a suite of sophisticated matchers. Deriving
such features for a given ontology can be time-consuming. However,
these features in one ontology often do not transfer in others. As



Table 4: Results of ontology matching on OAEI datasets.

Datasets FMA-NCI FMA-SNOMED NCI-SNOMED
Metrics P R F1 MRR P R F1 MRR P R F1 MRR
AML 0.942 0.899 0.920 – 0.902 0.729 0.806 – 0.890 0.744 0.810 –

LogMap 0.916 0.895 0.905 – 0.791 0.850 0.819 – 0.897 0.732 0.805 –
MTransE 0.627 0.640 0.633 0.416 0.505 0.475 0.490 0.372 0.254 0.378 0.304 0.349
GCN-Align 0.813 0.783 0.798 0.561 0.763 0.729 0.746 0.526 0.745 0.775 0.760 0.467
RDGCN 0.855 0.843 0.849 0.761 0.824 0.752 0.786 0.683 0.852 0.782 0.816 0.679
Medto 0.944 0.874 0.908 0.783 0.871 0.762 0.813 0.690 0.901 0.802 0.849 0.704

Medto (w/o HYP) 0.867 0.775 0.818 0.724 0.787 0.653 0.714 0.540 0.835 0.759 0.795 0.595
Medto (w/o HET) 0.927 0.851 0.887 0.763 0.863 0.747 0.801 0.676 0.881 0.807 0.842 0.688

shown in Tables 2 and 3, the accuracy of such approaches varies
dramatically depending on the quality of the given ontologies.
Effectiveness of Medto heterogeneous graph layer and hy-

perbolic graph convolution layer.We compare the performance
between the proposedMedto and its two variations, namedMedto
(w/o HYP) and Medto (w/o HET), which only use the heteroge-
neous graph layers and hyperbolic graph convolution layers, re-
spectively. Results are also shown in Table 2. We observe that full
model Medto consistently performs the best across three datasets,
with an average increase of 2.3% in F-1 score. This is attributed to
Medto’s unified representation, capturing the critical semantic and
structural features from multiple facets. It is also interesting to see
thatMedto (w/o HET) outperformsMedto (w/o HYP), which indi-
cates that hierarchical information in medical ontologies contains
more representative and critical features of ontology matching.
Our hyperbolic graph convolution module effectively encodes such
information for the matching module.
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Figure 6: Sensitivity analysis.

Hyper-parameter sensitivity analysis.We first analyze the re-
sults of Medto with 1 to 4 hyperbolic graph convolution and het-
erogeneous graph layers on OAEI datasets. In Figure 6a, we observe
the optimal number of layers is 2 (for FMA-NCI and SNOMED-NCI)
or 3 (for FMA-SNOMED). WhenMedto uses more layers, its per-
formance declines. The reason is thatMedto indirectly captures
more global contextual (i.e., top-level concepts) information by mes-
sage propagation, and such global information would lead to more
non-isomorphic neighborhoods.

Furthermore, we also aim to match ontologies with different
numbers of seed matches. We use different proportions 𝑟 of seed
matches in OAEI datasets. As shown in Figure 6b, theMedto per-
forms substantially better when 𝑟 increases from 0.2 to 0.4, but

the performance gain slows down as 𝑟 increases from 0.6 to 0.8.
This shows that Medto does not heavily rely on a large number of
high-quality seed matches and provides decent matching results
when the seed matches are limited.

6 RELATEDWORK

Graph representation learning. Recently graph representation
learning [14, 31] has been intensively studied and shown effective
for various tasks including node classification, link prediction and
graph matching. Recently, graph attention networks [12, 37, 38]
have been introduced and allow each node to attend over its various
neighbors and uses attention to assign different weights to different
nodes in a neighborhood. We refer interested readers to [9] for
more details. Recently, there has been research in extending GNNs
to learn non-Euclidean embeddings and thus benefit from both
the expressiveness of GNNs and hyperbolic geometry. Poincaré
embeddings [26] learn embeddings of hierarchical graphs such as
lexical databases (e.g., WordNet) in the Poincare space. HGCN [2]
and HGNN [25] apply graph convolutions in hyperbolic space by
leveraging the Euclidean tangent space, which provides a first-order
approximation of the hyperbolic manifold at a point. These methods
lead to improvements on graphs with hierarchical structures.
Ontology matching. Traditional feature-based approaches have
been investigated for ontology matching, including terminological-
based features, structural-based features and employing external
semantic thesauruses for discovering semantically similar entities.
LogMap [16] relies on lexical and structural indexes to enhance
its scalability. AML [11] also employs various sophisticated fea-
tures and domain-specific thesauri to perform ontology matching.
Feature-based methods mainly employ crafting features to achieve
specific tasks. Unfortunately, these hand-crafted features will be
limited for a given task and face the bottleneck of improvement.

Representation learning has limited impact on ontology match-
ing. DeepAlignment [20] is an unsupervised ontology matching
system, which refines pre-trained word embeddings with the de-
scriptions of entities, including synonyms and antonyms extracted
from general lexical resources and information captured implicitly
in ontologies. Similar to DeepAlignment, a framework is introduced
for medical ontology alignment [21], based on terminological em-
beddings. The retrofitted word vectors are learned from the domain
knowledge encoded in ontologies and semantic lexicons.
Entity alignment. Similar to ontology matching, entity alignment
seeks to find entities in different knowledge graphs (KGs) that



refer to the same real-world object. With the recent success of
graph representation learning, embedding-based entity alignment
has emerged and attracted massive attention recently [35]. GC-
NAlign [39] leverages GCNs for cross-lingual KG alignment. Entity
alignments are discovered based on the distances between enti-
ties in the embedding space. RDGCN [40] introduces dual relation
graphs to capture complex relation information via attentive inter-
action between KGs. AliNet [34] employs an attention mechanism
to key distant neighbors to expand the overlap between entities
neighborhood structures. It then controls the aggregation of the
direct and distant neighborhood using a gating mechanism. We
refer interested readers to the recent survey [35] for more details
on embedding-based entity alignment.
Data integration.Much effort has been made to towards data inte-
gration [7, 8], including schema alignment and data fusion. Schema
mapping methods [3] create a mediated (global) schema and iden-
tify the mappings between the mediated (global) schema and the
local schemas of multiple databases to determine which attributes
contain the same information. Hence, the main goal of data inte-
gration is to create the global schema so that multiple databases
can be integrated and queried together. In data to ontology, on the
other hand, there is only a single database, and the relations in this
database are mapped to concepts in a standard ontology to utilize
standard vocabularies and enable semantically rich queries.

7 CONCLUSION

In this paper, we propose an end-to-end framework Medto for
medical data to ontology matching.Medto creates a semantically
rich ontology from a given medical database and learns multiple
facets of concepts in both enriched and standard ontologies.Medto
encodes the hierarchical information of a concept in the hyperbolic
space through hyperbolic graph convolution layers. We further
capture both local and global structural information of a concept
using heterogeneous graph layers.Medto incorporates the infor-
mation from these layers and learns better concept representations
for ontology matching. Our experiments on a variety of real-world
medical databases and ontologies demonstrate the effectiveness
of Medto. As future work, we plan to support different types of
matching relations between two concepts (e.g., ⊆, ⊇, and disjoint)
and to extend Medto to match data to multiple ontologies in a
holistic manner.
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