

Complete Event Trend Detection in High-Rate Event Streams

Olga Poppe*, Chuan Lei**, Salah Ahmed*, and Elke A. Rundensteiner*

*Worcester Polytechnic Institute, **NEC Labs America

SIGMOD

May 16, 2017

Funded by NSF grants CRI 1305258, IIS 1343620

Real-time Event Trend Analytics

Event trend = event sequence of any length

2

Event trend: Aggressive driving

E-commerce

Event trend: Items often bought together

Health care

Event trend: Irregular heart rate

Stock market

Event trend: Head-and-shoulders

Cluster monitoring

Event trend: Uneven load distribution

Financial fraud

Event trend: Circular check kite Worcester Polytechnic Institute

Check Kiting Fraud

Check Kiting Fraud

3

- In 2013, a bank fraud scheme netted \$5 million from six New York City banks [FBI]
- In 2014, 12 people were charged in a large-scale "bust out" scheme, costing banks over \$15 million [The Press Enterprise]

Complete Event Trend Detection

4

Problem Statement & Challenges

Problem Statement

CET optimization problem is to detect all CETs matched by Kleene query q in stream I with minimal CPU processing costs while staying within memory M

Challenges

5

1. Expressive yet efficient

Exponential number of event trends of arbitrary length

2. Real-time yet lightweight

Common event sub-trend storage versus their re-computation

3. Optimal yet feasible

NP-hard event stream partitioning problem

State-of-the-Art Approaches

- **1.** Limited expressive power Neither Kleene closure nor the skip-till-any-match semantics are supported [1,2,3]
- **2. Delayed system responsiveness** Common event sub-trends are re-computed [1,2,3,4]

- 1) Flink. https://flink.apache.org/
- 2) A.Demers, et al. Cayuga: A General Purpose Event Monitoring System. In CIDR'07.
- 3) Y.Mei, et al. ZStream: A Cost-based Query Processor for Adaptively Detecting Composite Events. In SIGMOD'09.
- 4) H.Zhang, et al. On Complexity and Optimization of Expensive Queries in Complex Event Processing. In SIGMOD'14.

7

Cases of the base-line algorithm: 1. Start a new CET

7

Cases of the base-line algorithm:

- 1. Start a new CET
- 2. Append to an existing CET

Cases of the base-line algorithm:

1. Start a new CET

7

- 2. Append to an existing CET
- **3.** Replicate the prefix of an existing CET and append to it

7

Problem: Exponential time & space complexity

Overview of Our CET Approach

8

Cases of the graph construction algorithm: **1.** Start a new CET

Cases of the graph construction algorithm:

- 1. Start a new CET
- 2. Append to an existing CET

Cases of the graph construction algorithm:

1. Start a new CET

9

- 2. Append to an existing CET
- 3. Append to the prefix of an existing CET

Compact CET encoding = CET graph

- Matched event = vertex
- Event adjacency relation = edge
- CET = Path through the graph

Quadratic time & space complexity

Step 2: Graph-based CET Detection

Spectrum of CET Detection Algorithms

T-CET: Time-optimal BFS-based algorithm

10

M-CET: Memory-optimal DFS-based algorithm

Is a **middle ground** possible?

Step 2: Graph-based CET Detection

11

Our Proposed H-CET (Hybrid) Algorithm

Graph Partitioning Search Space

12

Graph partitioning search is **exponential** in # of atomic graphlets Goal: Optimal graph partitioning plan

Balanced Graph Partitioning

5,7,9,11 5,7,10,11 5,7,10,12 5,8,9,11 5,8,10,11 5,8,10,12 6,8,9,11 1,3 6,8,10,11 2,3 6,8,10,12 2,4 5 3 7 9 11 1 2 8 10 12 6 4

CPU: 27 connect operations **Memory**: 42 events

CPU: 27 connect operations **Memory**: 36 events

Theorem. The closer a graph partitioning is to balanced, the lower are CPU & memory costs of the CET detection.

Graph Partitioning Algorithm

Pruning principles:

14

1. Unbalanced node pruning

Number of Graphlets

5,7,9,11 5,7,10,11 5,7,10,12 5,8,9,11 5,8,10,11 5,8,10,12 6,8,9,11 1,3 2,3 6,8,10,11 6,8,10,12 2.4 5 9 11 3 7 1 10 12 2 6 8

2 Graphlets

3 Graphlets

CPU: 27 connect operations **Memory**: 42 events **CPU**: 38 connect operations **Memory**: 18 events

Theorem. If we add a cut to the graph, memory costs of CET detection goes down, while CPU processing time goes up.

Graph Partitioning Algorithm

Pruning principles:

16

- 1. Unbalanced node pruning
- 2. Infeasible level pruning

Graph Partitioning Algorithm

Pruning principles:

17

- 1. Unbalanced node pruning
- 2. Infeasible level pruning
- **3. Inefficient branch pruning**

Experimental Setup

18

Execution infrastructure:

Java 7, 1 Linux machine with 16-core 3.4 GHz CPU and 128GB of RAM

Data sets:

Stock real data set (ST) [1]

CETs = Stock trends

Physical activity monitoring real data set (PA) [2]

CETs = Behavioral patterns per person

Financial transaction synthetic data set (FT)

CETs = Circular check kites

[1] Stock trade traces. http://davis.wpi.edu/datasets/Stock Trace Data/[2] A. Reiss and D. Stricker. Creating and benchmarking a new dataset for physical activity monitoring. In PETRA, pages 40:1-40:8, 2012.

Experimental Setup

CET detection algorithms:

- Base line (BL) maintains a set of CETs
- SASE++ is memory-optimized [1,2]
- Flink is a popular open-source streaming engine that supports event pattern matching but not Kleene closure. Thus, we flatten our queries [3]

CET graph partitioning algorithms:

- Exhaustive (Exh)
- Greedy

19

Branch and bound (B&B)

[1] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman. Efficient pattern matching over event streams. In SIGMOD, pages 147-160, 2008.
[2] H. Zhang, Y. Diao, and N. Immerman. On complexity and optimization of expensive queries in Complex Event Processing. In SIGMOD, pages 217-228, 2014.
[3] Apache Flink. https://ink.apache.org/

CET Detection Algorithms

CET

- utilizes available memory to achieve 42-fold speed-up compared to SASE++
- is 2 orders of magnitude faster and requires 2 orders of magnitude less memory than Flink

CET Graph Partitioning

B&B is

21

- 2 orders of magnitude faster than Exhaustive but 3-fold slower than Greedy
- CET detection in a greedily partitioned CET graph is almost 3fold slower than in an optimally partitioned CET graph

Conclusions

We are the first to enable **real-time Kleene closure** computation over event streams under memory constraints

- 1. CET graph compactly encodes all CETs and defines the spectrum of CET detection algorithms
- Hybrid CET detection algorithm utilizes available memory to achieve 42-fold speed-up
- **3. Graph partitioning algorithm** prunes large portions of search to efficiently find an optimal graph partitioning

Acknowledgement

- DSRG group at WPI
- SIGMOD reviewers
- NSF grants CRI 1305258, IIS 1343620