
Natural LanguageQuerying of Complex
Business IntelligenceQueries

Jaydeep Sen
IBM Research AI

jaydesen@in.ibm.com

Fatma Ozcan
IBM Research AI

fozcan@us.ibm.com

Abdul Quamar
IBM Research AI

ahquamar@us.ibm.com

Greg Stager
IBM Canada

gstager@ca.ibm.com

Ashish Mittal
IBM Research AI

arakeshk@in.ibm.com

Manasa Jammi
IBM Research AI

manajam1@in.ibm.com

Chuan Lei
IBM Research AI

chuan.lei@ibm.com

Diptikalyan Saha
IBM Research AI

diptsaha@in.ibm.com

Karthik
Sankaranarayanan

IBM Research AI
kartsank@in.ibm.com

ABSTRACT
Natural Language Interface to Database (NLIDB) eliminates
the need for an end user to use complex query languages
like SQL by translating the input natural language state-
ments to SQL automatically. Although NLIDB systems have
seen rapid growth of interest recently, the current state-of-
the-art systems can at best handle point queries to retrieve
certain column values satisfying some filters, or aggrega-
tion queries involving basic SQL aggregation functions. In
this demo, we showcase our NLIDB system with extended
capabilities for business applications that require complex
nested SQL queries without prior training or feedback from
human in-the-loop. In particular, our system uses novel al-
gorithms that combine linguistic analysis with deep domain
reasoning for solving core challenges in handling nested
queries. To demonstrate the capabilities, we propose a new
benchmark dataset containing realistic business intelligence
queries, conforming to an ontology derived from FIBO and
FRO financial ontologies. In this demo, we will showcase a
wide range of complex business intelligence queries against
our benchmark dataset, with increasing level of complexity.
The users will be able to examine the SQL queries generated,
and also will be provided with an English description of the
interpretation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5643-5/19/06. . . $15.00
https://doi.org/10.1145/3299869.3320248

ACM Reference Format:
Jaydeep Sen, Fatma Ozcan, Abdul Quamar, Greg Stager, Ashish
Mittal, Manasa Jammi, Chuan Lei, Diptikalyan Saha, and Karthik
Sankaranarayanan. 2019. Natural Language Querying of Complex,
Business Intelligence Queries. In 2019 International Conference on
Management of Data (SIGMOD ’19), June 30-July 5, 2019, Amsterdam,
Netherlands. ACM, New York, NY, USA, 4 pages. https://doi.org/10.
1145/3299869.3320248

1 INTRODUCTION
With the omnipresence ofmobile devices coupledwith recent
advances in automatic speech recognition capabilities, there
has been a growing demand for Natural Language Interfaces
to Databases (NLIDB). The reason behind the rapid increase
of popularity of NLIDB systems is due to the fact that they
do not require the users to learn a complex query language,
such as SQL, or understand the exact schema of the data, or
how it is stored, making it very easy to explore complex data
sets, beyond simple keyword search queries.

Natural language interfaces to databases have become an
increasingly important research field during the last decade [6,
7, 9, 10]. Most prominent among state-of-the-art includes
our previous work ATHENA [6, 10] and its predecessor
NALIR [7], both of which essentially are rule-based systems.
While NALIR supports few specific types of basic nested
queries using natural language parsing and human in-the-
loop feedback, it could not handle complex nested queries,
and the need of an expert feedback became a bottleneck. On
the other hand, ATHENA improves over NALIR by avoiding
user dependence with ontologies capturing domain seman-
tics, but it falls short of handling nested queries as well.
A different category of works [11, 13] employs machine

learning approaches to tackle the problem. However, the
main drawback with this approach is the limited amount
of domain-specific data to train with, making systems like
Seq2SQL [13] to handle only single table select and project
queries. More recently, DBPal [12] claims to handle join

https://doi.org/10.1145/3299869.3320248
https://doi.org/10.1145/3299869.3320248
https://doi.org/10.1145/3299869.3320248

queries and a selective set of nested queries where the corre-
sponding query phrasings have to be available as part of the
training data.
In both segments of research, nested query handling re-

mains an open challenge, because none of the systems are
equipped with the deep domain reasoning capability, which
is essential for interpreting BI queries and producing cor-
rect nested queries. In particular, the challenges in handling
nested queries are as follows.

•Detecting aNLquerywhich requires nesting.Whether
a natural language (NL) query requires nesting depends on
multiple convoluted factors, including operations involved,
operands in use, domain semantics, and SQL query seman-
tics.

• Forming the correct subqueries. To form the right
subqueries (inner and outer), we need to accurately identify-
ing which tokens from the NL query are to be considered for
each subquery, which is often non-trivial in natural language
phrasing.

• Forming the correct join condition between sub-
queries. Finding the correct join conditions between sub-
queries depends not only on SQL query semantics, but often
requires deep domain reasoning.
In this demonstration, we will showcase our NLIDB sys-

tem, which is an extension of our earlier work on ATHENA.
The system is capable of handling a wide range of BI queries
including complex join and nested queries. To address the
above challenges, our system uses novel algorithms that com-
bine linguistic analysis with deep domain reasoning without
prior training or feedback from human in-the-loop. In our
previous work [5], we demonstrated how to use ATHENA in
querying financial knowledge bases curated from unstruc-
tured content. In this demonstration, we enrich the Finance
domain ontology beyond [5], with transaction data, resulting
in a new benchmark FIBEN with more concepts and rela-
tions. This new benchmark emulates data marts, and hence
allows more complex BI queries. In particular, we integrate
two widely known financial domains (SEC [3] and TPoX [8])
to create FIBEN, and curate meaningful data conforming to it.
We demonstrate the capabilities of our system with real life
BI queries and complex analytic queries on FIBEN to derive
crucial business insights from underlying data, with increas-
ing level of complexity. The users will be able to examine
the SQL queries generated, and also will be provided with
an English description of the interpretation1.

2 A FINANCE BENCHMARK DATASET
FIBEN is a complex business intelligence benchmark dataset
that emulates a real-world data mart. To create FIBEN, we
combined data from two different financial sub-domains.

• SEC dataset [3] is a publicly available dataset extracted
from public Securities and Exchange Commission (SEC) fil-
ings submitted as XBRL documents. The filing data is cu-
rated using an enrichment flow [5], and provides information
1See https://youtu.be/GR55C-NWQwY for a demo video.

Public
Company

Public
Metric

Public Metric Data

name

Assignment
History

Person

For Person
For Company

For Company For Metric

Insider
History

title

position

name
name

For Company

Object Property

Data Property

Concept

Period_type

Insider
Person

For Insider

isA

bio

Industry

sic_majorCompany

isA

To Industry

Financial Service
Account

Is Owned By

Securities
Transaction

Is Facilitated By

Listed
Security

Refers To

Monetary
amount

Has Last
traded value

settlement
date

Has Type

Has
Amount

Security

Is Provided
ByisA

hasLegal
Name

Has Price

Figure 1: Snapshot of FIBEN Ontology
about public companies, their officers, and financial metrics
reported over a period of time. This dataset is a source of
archived financial data reported to the SEC over the last
15 years, and lends itself to provide rich business insights
regarding the financial health and performance of public
companies in a variety of different industry sectors.

• TPoX dataset [8] is a transaction processing bench-
mark, which describes financial transactions over holdings
and securities provided by public companies. We used the
TPoX data generator to generate dynamic data in terms of
financial transactions. Each financial transaction is linked
to a customer account. The customer account describes the
customer’s portfolio in terms of the securities held, and is
associated with the buying or selling of securities such as
stocks, bonds and mutual funds of publicly traded compa-
nies in different financial markets over a period of time. The
TPoX schema is shown in Figure 2.

Figure 2: TPoX Schema

We mapped the two datasets through an extensive set
of data transformations to the relevant subsets of two stan-
dard finance ontologies: Finance Industry Business Ontology
(FIBO) [1] and Finance Report Ontology (FRO) [2]. FIBO
is the de-facto industry standard defined by the enterprise
data management (EDM) council to represent business con-
cepts and information in the finance domain. FRO is a formal
report ontology of an XBRL based financial report which cap-
tures the financial metric data reported by public companies
to SEC. Figure 1 shows the combined FIBO-FRO ontology
describing the schema of our FIBEN dataset.
To provide a standard benchmark for testing BI applica-

tions, we integrate the two datasets through public compa-
nies. Securities held and traded by customers in the TPoX
dataset are provided by public companies that are available
in the SEC dataset. The combined FIBEN dataset enables a

rich set of analytical queries including complex joins and
nested queries across both datasets.

3 SYSTEM OVERVIEW
The system architecture is depicted in Figure 3 and is ex-
tended from the architecture presented in ATHENA [10].
The components specific to nested query handling include
Nested Query Detector, Subquery Formation, and Subquery
Join Condition. While the complete details of each of the
components is beyond the scope of a demonstration paper,
we will use an example query flow to explain these extended
components. Consider the query “who bought more IBM
stocks than they sold”.

Evidence Annotator. This follows the same process as
detailed in ATHENA [10], where the Evidence Annotator
scans through all the words (a.k.a. tokens) and identifies
“stock” to be a mention of the ontology concept “ListedSecu-
rity", “IBM" as a value in the database column corresponding
to “ListedSecurity.name”. Similarly, “bought" and “sold" are
values of “Transaction.type”, and “who” is an indication to
include “Persons” in the select clause of the target SQL query.
The tokens that are mapped to some ontology elements are
called entities.

Users

Evidence Annotators

Nested Query Detector

Subquery Formation

Subquery Join Condition

Query Building

Query Translator

Ranked OQLs

Relational
Database

Results

Translation
Index

Domain
Ontology

Ontology to
Database Mapping

NLQ Engine

Nested Query Handling

Figure 3: System Architecture

Nested Query Detector. Multiple aspects of a natural
language query along with the domain semantics can in-
dicate if it requires nesting. The different aspects include
linguistic analysis of the NL query and semantic annotators
which maps specific tokens from NL query to domain terms.
There is a reasoning submodule that works on the outputs
of linguistic analyzer and semantic annotators to detect a
possible nested query. In this example, linguistic analysis
identifies a comparison of type “more than” with argument
“stocks” and Semantic Annotators maps “stock” to a concept.
The reasoning submodule identifies that the operand “stocks”

of “more than” operation must be expanded into a subquery
in order to be compared using a numeric operator like “more
than”.

Subquery Formation. Once a query is detected to be a
nested query, subquery formation module builds two sub-
queries for the inner and outer queries, by identifying the
right set of tokens associated with each part. Note that the
subqueries do not need to have a disjoint set of tokens and of-
ten the subqueries share tokens without any hard boundary
on their positions in the NL query. The right set of tokens for
each subquery is found by using a set of rules applicable to
the query, where each rule considers the annotator outputs
and domain elements. In the example query, the right set of
tokens for the outer query are {Who, Bought, IBM, Stock},
and for inner query are {Who, Sold, IBM, Stock}, where
“Who”, “IBM”, “Stock” tokens are shared between both sub-
queries. The set of rules applied to determine the shared
tokens for this specific question are as follows.

Rule 1. Any argument(“Stock”) of a numeric comparison
(“more than”) will be shared across subqueries.

Rule 2. Any instance value (“IBM”) from the database
having a functional relation with an argument (“Stock”) of a
comparison argument will be shared.

Rule 3. An entity in the outer Query (“who”) that is co-
referenced in the inner query (“they”) will be shared with
the inner query as well.

Subquery Join Condition. Once the logical subqueries
are formed, the join condition needs to be identified be-
tween the subqueries to produce the complete query. The
join condition depends on the linguistic analysis as well as
the domain reasoning. In the example question, linguistic
analysis maps “more than” to “>” operator, and identifies
that it compares with subquery results. Domain analysis
finds the argument “stock” is not non-numeric, and hence it
cannot be the operand of the comparison. It is then left to
domain reasoning to identify that every stock has an associ-
ated “count” for each transaction and “count” is a numeric
entity. Join condition is thus derived as “>” applied over
“SUM(Transaction.hasCount’)”.
4 DEMONSTRATIONS
As mentioned earlier, our work focus on handling a wide
range of complex nested queries without the need for human-
in-the-loop feedback or prior training. We will demonstrate
this through three different tasks.

Familiarization with FIBEN Ontology. The complete
FIBEN ontology consists of 152 concepts, 664 data properties
and 159 object properties (i.e., relations). Such large-scale on-
tology emphasizes why an end user needs to get familiarized
with the domain semantics in order to appreciate the insight-
ful analytic queries in this domain. We plan to showcase
the complete ontology and the underlying database schema
to the audiences so that they understand the various actors
in the finance domain and the different roles that those ac-
tors are playing. They can use tools like WebVOWL [4] to
navigate the ontology themselves.

Figure 4: UI Screen with Pre-populated Queries
NestedQueryAnswering. For themain part of our demon-

stration, we will focus on the wide range of complex nested
queries that our system can handle. Instead of a story script,
we would show a sequence of queries with increasing order
of their complexity, and pre-populate the UI to have such
sample complex business intelligence queries. An example
snapshot of such a UI screen is shown in Figure 4. As can be
seen, the queries cover a wide range of complexity, ranging
from queries that do not need nesting and can be expressed
using having clauses, to queries with different join conditions
combining inner and outer query blocks in the nested query.
For example, the query “Show me everyone who bought
and sold the same stock” needs equality check (for “same”)
among non-numeric fields. Whereas a query like “Who has
bought more IBM stocks than they sold” is even more com-
plex because it involves numeric comparison between two
aggregation (i.e., sum of stock counts) results.

Figure 5: AnExample of aComplexQuery andAnswer

Interactive UI. The same UI with pre-populated interest-
ing business intelligence queries (Figure 4) will be used to let
the audiences interact with the system. The audiences can
choose to run such pre-populated queries, or frame their own
queries over the FIBEN ontology for an unscripted demon-
stration. Figure 5 shows the visualization with an example
question and its answer. For every query, we will also show
the English description of how the system interpreted the
user statement, and the generated SQL query which is ex-
ecuted against the data store to produce the query result.

Our demo will run on DB2®2. Figure 6 shows the part of
the ontology graph which was relevant for answering the
query “Show me each transaction for IBM whose price is
less than the average selling price”. It also shows the specific
subgraphs which were created for both outer query and in-
ner query. We will include these details for the audiences to
easily correlate the query interpretation with the underlying
domain semantics.

Figure 6: An Example of Subgraph and Subqueries

REFERENCES
[1] 2018. FIBO. https://spec.edmcouncil.org/fibo/. (Oct. 2018).
[2] 2018. FRO. http://xbrl.squarespace.com/financial-report-ontology/.

(Oct. 2018).
[3] 2019. SEC Financial Statement Data Sets. https://www.sec.gov/dera/

data/financial-statement-data-sets.html. (Jan. 2019).
[4] 2019. WebVOWL: Web-based Visualization of Ontologies. http://vowl.

visualdataweb.org/webvowl.html. (Jan. 2019).
[5] Shreyas Bharadwaj, Laura Chiticariu, Marina Danilevsky, et al. 2017.

Creation and Interaction with Large-scale Domain-Specific Knowledge
Bases. PVLDB 10 (2017), 1965–1968.

[6] Chuan Lei, Fatma Özcan, Abdul Quamar, Ashish R. Mittal, Jaydeep Sen,
Diptikalyan Saha, and Karthik Sankaranarayanan. 2018. Ontology-
Based Natural Language Query Interfaces for Data Exploration. IEEE
Data Eng. Bull. 41, 3 (2018), 52–63.

[7] Fei Li and H. V. Jagadish. 2014. Constructing an Interactive Natural
Language Interface for Relational Databases. Proc. VLDB Endow. 8, 1
(2014), 73–84.

[8] Matthias Nicola, Irina Kogan, and Berni Schiefer. 2007. An XML
transaction processing benchmark. In SIGMOD Conference.

[9] Ana-Maria Popescu, Oren Etzioni, and Henry Kautz. 2003. Towards a
Theory of Natural Language Interfaces to Databases. In Proceedings of
the 8th International Conference on Intelligent User Interfaces (IUI ’03).
ACM, New York, NY, USA, 149–157. https://doi.org/10.1145/604045.
604070

[10] Diptikalyan Saha, Avrilia Floratou, Karthik Sankaranarayanan, et al.
2016. ATHENA: an ontology-driven system for natural language query-
ing over relational data stores. Proceedings of the VLDB Endowment 9,
12 (2016), 1209–1220.

[11] Alane Suhr, Srinivasan Iyer, and Yoav Artzi. 2018. Learning to
Map Context-Dependent Sentences to Executable Formal Queries.
In NAACL-HLT.

[12] Prasetya Utama, Nathaniel Weir, Fuat Basik, et al. 2018. An End-to-
end Neural Natural Language Interface for Databases. arXiv preprint
arXiv:1804.00401 (2018).

[13] Victor Zhong, Caiming Xiong, and Richard Socher. 2017. Seq2SQL:
Generating Structured Queries from Natural Language using Rein-
forcement Learning. arXiv preprint arXiv:1709.00103 (2017).

2DB2 is a registered trademark of IBM Corporation

https://spec.edmcouncil.org/fibo/
http://xbrl.squarespace.com/financial-report-ontology/
https://www.sec.gov/dera/data/financial-statement-data-sets.html
https://www.sec.gov/dera/data/financial-statement-data-sets.html
http://vowl.visualdataweb.org/webvowl.html
http://vowl.visualdataweb.org/webvowl.html
https://doi.org/10.1145/604045.604070
https://doi.org/10.1145/604045.604070

	Abstract
	1 Introduction
	2 A Finance Benchmark Dataset
	3 System Overview
	4 Demonstrations
	References

