

Event Trend Aggregation Under Rich Event Matching Semantics

Olga Poppe¹, Chuan Lei²,

Elke A. Rundensteiner³, and David Maier⁴

¹Microsoft Gray Systems Lab, ²IBM Research – Almaden, ³Worcester Polytechnic Institute, ⁴Portland State University

July 3rd, 2019

Supported by NSF grants IIS-1815866, CRI-1305258, IIS-1018443

2

Goal: Reliable actionable insights about the streamSolution: Each event is considered in the context of other events in the stream

Picture source: http://www.businessxack.com/ how-to-know-the-stock-market-trend/1303

- Single event = Single stock value
- Event sequence = Stock down trend of *fixed* length
- Event trend = Stock down trend of *arbitrary* length

2

- Single event = Single stock value
- Event sequence = Stock down trend of *fixed* length
- Event trend = Stock down trend of *arbitrary* length

- Single event = *Single* stock value
- Event sequence = Stock down trend of *fixed* length
- Event trend = Stock down trend of *arbitrary* length

- Single event = *Single* stock value
- Event sequence = Stock down trend of *fixed* length
- Event trend = Stock down trend of *arbitrary* length under the *skip-till-next-match* semantics

Event Trend Aggregation Under Rich Event Matching Semantics

Algorithmic Trading

Ridesharing Service

Cluster Monitoring

Number of downtrends per sector ignoring local price fluctuations

Skip-till-any-match semantics

Average speed of Uber trips per district ignoring irrelevant events Total CPU load per mapper experiencing contiguously increasing load

Skip-till-next-match semantics

Contiguous semantics

E.Wu, Y.Diao, and S.Rizvi. High-performance Complex Event Processing over streams. SIGMOD, pages 407-418, 2006

Worcester Polytechnic Institute

3

Complexity of Event Trend Analytics

4

Complexity of Event Trend Analytics

Complexity of Event Trend Analytics

Real-time event trend aggregation despite

- Rich event matching semantics
- Exponential number and arbitrary length of trends
- Complex event inter-dependencies in a trend

Existing Two-Step Approaches

5

Picture source: http://www.zerohedge.com/news/2015-12-05/dozensglobal-stock-markets-are-already-crashing-not-seen-numbers-these-2008

Coarse-Grained Online Trend Aggregation

6

Approach Overview

COGRA Framework

Worcester Polytechnic Institute

7

Cogra Template

End type

Worcester Polytechnic Institute

8

for skip-till-any-match semantics

Event	a.count	b.count	A.count	B.count
a1	1			

for skip-till-any-match semantics

9

Event	a.count	b.count	A.count	B.count
a1	1		→ 1	

for skip-till-any-match semantics

9

Event	a.count	b.count	A.count	B.count
a1	1		1	
b2		1		

for skip-till-any-match semantics

9

Event	a.count	b.count	A.count	B.count	Event trends:
a1	1		1		(a1,b2)
b2		1		→ 1	

for skip-till-any-match semantics

Event	a.count	b.count	A.count	B.count	Event trends:
a1	1		1		(a1,b2)
b2		1		1	
a3	3 두				

for skip-till-any-match semantics

Event	a.count	b.count	A.count	B.count	Event trends:
a1	1		1		(a1,b2)
b2		1		1	
a3	3 —		→ 4		

for skip-till-any-match semantics

Event	a.count	b.count	A.count	B.count
a1	1		1	
b2		1		1
a3	3		4	
a4	6		10	
b6		10		11
a7	22		32	
b8		32		43

for skip-till-any-match semantics

10

	Existing Two-Step Approaches	Cogra
Idea	 Construct all trends Aggregate them 	One aggregate is kept per event type
Time complexity	Exponential in #events per window	Linear in #events per window, i.e., optimal
Space complexity	Exponential if all trends are stored	Linear in #event types in the pattern

Online Pattern-Grained Aggregator

for skip-next-any-match & contiguous semantics

11

	Existing Two-Step Approaches	Cogra
Idea	 Construct all trends Aggregate them 	One aggregate is kept per pattern
Time complexity	Polynomial in #events per window	Linear in #events per window, i.e., optimal
Space complexity	Polynomial if all trends are stored	Constant

Cogra enables real-time in-memory event trend aggregation

Experimental Setup

Execution infrastructure:

Java 8, 1 Linux machine with 16-core

3.4 GHz CPU and 128 GB of RAM

Data sets:

- New York city taxi and Uber data set (330 GB)
 - Event trend = Taxi or Uber trip
- Physical activity real data set (1.6 GB)
 - Event trend = Sequence of physical activities
- Stock real data set (1.3 GB)
 - Event trend = Stock market trend
- Unified New York City Taxi and Uber data. https://github.com/toddwschneider/nyc-taxi-data
- Historical Stock Data. http://www.eoddata.com
- A.Reiss and D.Stricker. Creating and Benchmarking a New Dataset for Physical Activity Monitoring. In PETRA, 2012, 40:1–40:8

Event Aggregation Approaches

1	3	l
E (-	

Approaches	Kleene	Event r	matching sen	Online	
	closure	Skip-till- any-match	Skip-till- next-match	Contiguous	sequence\trend aggregation
Flink	+	+	+	+	
Sase	+	+	+	+	
Greta	+	+			+
A-Seq		+			+
Cogra	+	+	+	+	+

Flink: https://fink.apache.org/

Sase: H.Zhang, Y.Diao, and N.Immerman. On complexity and optimization of expensive queries in Complex Event Processing. In SIGMOD, pages 217-228, 2014

Greta: O.Poppe, C.Lei, E.A.Rundensteiner and D.Maier. Greta: Graph-based Real-time Event Trend Aggregation. In VLDB, pages 80-92, 2017

A-Seq: Y.Qi, L.Cao, M.Ray, and E.A.Rundensteiner. Complex Event Analytics: Online Aggregation of Stream Sequence Patterns. In SIGMOD, pages 229–240, 2014

Experimental Results

Cogra is a win-win solution that achieves up to **10⁶ speed-up** and up to **10⁷ memory reduction** compared to state-of-the-art

Worcester Polytechnic Institute

14

We are the first to compute **aggregation of Kleene pattern matches under rich event matching semantics** with **optimal time complexity**

- Cogra incrementally maintains event trend aggregates at the coarsest granularity
- Cogra guarantees quadratic time complexity and linear space complexity in the number of events in the worst case
- Cogra enables real-time in-memory event trend aggregation as required by time-critical streaming applications

14

15