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ABSTRACT
Domain-specific knowledge bases (KB), carefully curated
from various data sources, provide an invaluable reference
for professionals. Conversation systems make these KBs eas-
ily accessible to professionals and are gaining popularity
due to recent advances in natural language understanding
and AI. Despite the increasing use of various conversation
systems in open-domain applications, the requirements of a
domain-specific conversation system are quite different and
challenging. In this paper, we propose an ontology-based
conversation system for domain-specific KBs. In particular,
we exploit the domain knowledge inherent in the domain
ontology to identify user intents, and the corresponding en-
tities to bootstrap the conversation space. We incorporate
the feedback from domain experts to further refine these
patterns, and use them to generate training samples for the
conversation model, lifting the heavy burden from the con-
versation designers. We have incorporated our innovations
into a conversation agent focused on healthcare as a feature
of the IBM Micromedex product.
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1 INTRODUCTION
In various domains, data from unstructured, semi-structured
and structured data sources are curated and integrated into
a domain-specific knowledge base (KB). With the help of an
editorial team, comprising of subject matter experts (SMEs),
the resulting KB contains high-quality knowledge that can
help users make better decisions in their applications. For ex-
ample, a medical KBwhich contains information about drugs,
findings, conditions, and procedures, can be used by medical
professionals as a valuable reference in clinical decision mak-
ing. The value of this highly distilled domain-specific KB also
depends on how easy it is for the non-technical professionals
to access the information they need.

Conversation interfaces enable users to interact with the
KB using the principles of a natural human-to-human con-
versation [14]. In this paper, we define a natural conver-
sation interface as one that exhibits at least the following
features: 1) natural language understanding, 2) natural lan-
guage generation, 3) persistent context and 4) conversation
management. Natural language understanding is the ability
to recognize both the intent of user utterances (e.g., “showme
drugs that treat psoriasis in children” ) and particular entities
within those utterances (e.g., “drugs”, “treat”, “psoriasis”, and
“children” ) formulated in a particular natural language (e.g.,
English, Spanish, Mandarin, etc.). Natural language genera-
tion is the ability to respond to the user’s natural language
utterances with appropriate natural language utterances (e.g.,
“Fluciononide and Tazarotene treat psoriasis in children” ), as
well as supporting artifacts (e.g., lists, charts, images, etc.).
Persistent context is the ability of the conversation agent
to “remember” and display sensitivity to prior intents and
entities in the conversation. This enables users to articulate
requests or queries across multiple utterances in a conver-
sation without failures in natural language understanding.
Finally, conversation management is the ability to respond
appropriately to common conversational actions that enable
user and agent to manage the interaction itself.
Advances in natural language processing and artificial

intelligence have led to the increasing availability and use of
conversation systems for various applications. Conversation
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systems such as IBM Watson Assistant, Apple Siri, Google
Now, Microsoft Cortana, or Amazon Alexa are widely used
for general-purpose tasks. Despite the increasing use of these
systems in open-domain applications, the requirements of a
domain-specific conversation system are quite different and
challenging. To design effective domain-specific conversa-
tion systems, we need to understand not only the domain
knowledge but also the contents of the KB, so that we can an-
ticipate and design for possible user intents. As a result, most
conversation interfaces to domain-specific KBs are special
built for the particular KB in question. We observe that data
in a KB can be described using domain specific ontologies,
which provide a powerful abstraction of the data in terms
of the entities of the domain and their relationships. This
information can be exploited to identify potential usage pat-
terns, i.e., questions we expect the users to ask, such as “what
drug treats condition bronchitis?”. In this paper, our goal is to
develop a principled methodology to develop conversation
interfaces to domain-specific KBs, in a domain-agnostic way.
For this purpose, we propose an ontology-based approach
to automate the conversation interface design.

In this paper, we develop techniques that combine domain
knowledge in the ontology with the feedback from SMEs to
bootstrap a conversation space. In particular, we describe
algorithms to extract usage patterns from the domain on-
tology to identify user intents and the key entities that are
involved, as well as to generate the training samples for the
conversation service. The effectiveness of the conversation
system heavily depends on how well its model is trained,
and hence depends on the quality and the quantity of the
training samples. Providing sufficiently large training sam-
ples hence is a time-consuming task in conversation design.
Our approach alleviates this by generating training samples
from the usage patterns extracted from the domain ontology.

To prove the effectiveness of our approach, we have imple-
mented our techniques to create a healthcare conversation
service. In this paper, we describe this use case in detail, and
discuss the lessons learned. We focus on healthcare due to
its complex KB, and the potential of a conversation system
to help medical professionals as a mechanism for easy access
to this complex knowledge. The main contributions of this
work are summarized as follows:

• We use a domain ontology to not only represent the
semantics of a knowledge base but also capture all
possible user intents over the KB.

• We develop techniques to bootstrap a conversation
space with artifacts, including entities, intents, and
training examples, generated automatically from the
domain ontology, and further refined by domain ex-
perts. Our techniques are domain agnostic, and work
with any knowledge base.

• We implement our technique in a medical use case, to
provide a conversational interface to a medical KB. We
describe our experiences and lessons learned with this
use case. We also present an experimental evaluation
based on real usage statistics of our system gathered
over a period of 7 months.

The rest of the paper is organized as follows. In Section 2,
we present the architecture of our conversation system, and
in Section 3 we discuss the role of domain ontologies in our
system. In Section 4, we describe our core technology to
bootstrap the conversation space using the domain specific
ontology, and in Section 5 we describe the construction a
dialogue structure for the conversation system in the form
of a dialogue tree. We present the implementation of our
techniques for the medical use case in Section 6, and provide
experimental results of this use case in Section 7.We compare
our system to related work in Section 8, and conclude in
Section 9.

2 SYSTEM OVERVIEW
The system consists of three key components: the domain
ontology, a conversation space, and natural language query
service.
The domain ontology describes the schema of the data

stored in the KB and serves as the core of our system. More
specifically, the ontology provides a structured view of the
KB, in the form of the entities, the properties associated with
these entities, and the relationships between them.
The conversation space (e.g., Watson Assistant) allows

users to interact with the KB. The conversation space con-
sists of three main components that enable it to interact with
users: intents, entities, and dialogue. Intents are goals/ac-
tions that are expressed in the user utterances, while entities
represent information that is relevant to the user’s purpose.
The dialogue provides a response to a user conditioned on
the identified intents, entities in the user’s input and the
current context of the conversation.
The natural language query (NLQ) service is used to gen-

erate the query templates that are associated with the user
intents. It takes the user utterance as input, and interprets it
over the domain ontology to produce a structured query (e.g.,
SQL query) which constitutes the answer to the user [29].
The query templates for the intents are then derived from
this structured query.
Figure 1 illustrates the offline and online components of

our system, respectively. In the offline process, our system
first creates a domain ontology [18] to capture the semantics
of the underlying KB. We automatically create the domain
ontology from the instance data in the KB and the result-
ing ontology is further refined by the subject matter experts
(SMEs), if needed. We then extract the intents and entities
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from the domain ontology as well as the instance data cor-
responding to the entities contained in the KB, to generate
the training samples for the identified intents. This conver-
sation space can be enriched by the SMEs, as explained in
Section 4. A dialogue is automatically constructed based
on the identified intents and entities. The NLQ service is
utilized to programmatically generate the set of structured
query templates corresponding to the user intents.
In the online process, a user interacts with the conver-

sation space in natural language. The conversation space
identifies the intents and entities from the user’s natural lan-
guage questions and populates the corresponding structured
query templates to generate SQL queries that are executed
against the KB to retrieve the answers to the user queries. Fi-
nally, the answers are returned by the conversation space as
part of the dialogue. This online process is fully-automated.

Ontology

Conversational Interface

Knowledge 
Base

NLQ
Service

Intent EntityDialogue

Structured 
Query Template

model

bootstrap

produce

Human-in-the-loop Automated

(a) Offline Process

Conversation Space

Intent EntityDialogue

Well-formed
Query (SQL)

Knowledge 
Base

(b) Online Process.

Figure 1: System Architecture (best viewed in color).

3 ONTOLOGY
We use ontologies to capture the semantics of the domain
schema. An ontology provides a rich and expressive data
model combined with a powerful object-oriented paradigm
that captures a variety of real-world relationships between
entities such as inheritance, union, functional, etc. OWL [1] is
a popular language to describe ontologies. In OWL, a concept
is defined as a class, a property associated with a concept

is defined as a data property, and a relationship between
two concepts is defined as an object property. Additionally,
there is a subsumption (isA) relationship between concepts,
to denote that all the instances of a child concept are also
instances of a parent concept. Finally, a union relationship is
a special case of subsumption, in which the children of the
same parent are mutually exclusive and exhaustive, i.e., every
instance of the parent is an instance of one of its children.
Figure 2 shows a snippet of a medical ontology, where

concepts are depicted as circles, data properties as orange
boxes and object properties as edges (their names are shown
in green boxes). In this example, the concept “Drug” has
the (data) properties “name” and “brand”, and it connects to
the concept “Indication” through the object property “treats”.
The concept “Drug Food Interaction” is a specialization of
the concept “Drug Interaction”, and this is captured by an
“isA” edge between them. Similarly, “Risk” is a union of the
concepts “Contra Indication” and “Black Box Warning”. We
capture this union relationship by edges labeled as “unionOf”.

Ontology Creation. The ontology describing a data set
can be created in several ways. 1) We can utilize the knowl-
edge of subject matter experts (SMEs) to identify the con-
cepts, data properties and relationships relevant to the do-
main of the data set, and manually create an ontology. 2)
We can utilize a fully automated data-driven approach [18]
to generate an ontology that captures the semantics of the
underlying data and its schema. This ontology generation
process relies on schema information (e.g., primary key and
foreign key constraints), as well as data statistics to infer
concepts and their properties, including union and isA rela-
tionships. 3) A hybrid approach, where an ontology is first
created using the data driven approach, and is subsequently
refined using the help of SMEs. In our system, we use the hy-
brid approach to combine information from the underlying
data and schema, as well as the domain expertise of SMEs.

Ontology Utilization. The domain ontology is a key
component in our system, deriving two important tasks:

• Bootstrapping the conversation space with domain
knowledge in terms of intents, their training examples
and entities relevant to the domain. This is described
in Section 4.

• Supporting the generation of structured query tem-
plates for each identified intent.

4 BOOTSTRAPPING CONVERSATION
SPACE

A conversation space represents the finite set of all possible
interactions with the knowledge base (KB) that are supported
by the conversation interface or conversation system1. In this
1We use conversation system and conversation interface interchangeably
in the paper.
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section, we describe the mechanism for bootstrapping the
conversation space with artifacts extracted from the domain
ontology. First, we define the constituent building blocks of a
conversation space. Then we describe our techniques and an
automated workflow for extraction of relevant conversation
artifacts from the domain ontology and the underlying KB.

4.1 Conversation Space Building Blocks
A conversation space consists of three building blocks [14].

Intents. Intents express the purpose or goal of the user
utterance. Conversation systems typically use a machine
learning classifier to identify the intent for a given user query
within the context of the current conversation [14]. As a
consequence, most of these systems require the specification
of all intents expected in a given workload with labelled
query examples for training the classifier. These intents are
usually based on 1) the purpose of the business application
and the scope of questions that it intends to handle, as well
as 2) the anticipated set of questions that the users might ask
within the scope of the business application.

Entities. Entities represent real-world objects relevant
to a particular domain. A conversation system can choose
specific actions based on identified entities within a specific
intent. In current conversation systems [14], these need to be
provided as a set of pre-defined entities with examples and
domain-specific synonyms (the domain vocabulary) relevant
within the context of the application.

Dialogue. Dialogue is the structural representation of the
flow of conversation and is used to specify all possible con-
versation interactions that the conversation agent is required
to support. There are different ways of representing such
a structure, e.g., a tree, a state machine, etc. The dialogue
uses discovered intents, entities, and the application context
to provide an interactive experience to the user, often hav-
ing mechanisms to carry contextual information across user
utterances within a single thread.

Typically, dialogue uses a context data structure to capture
and persist relevant information across turns or iterations
in a conversation, to better understand and respond to user
requests. The context captures the current state of interaction
in terms of the current intent, entities extracted from user
utterances, etc., allowing users to refer to entities mentioned
in prior turns of the conversation. Information persisted in
a context can be customized to the application needs of the
application by the conversation designer and be also used
for interacting with external data sources.

Next, we describe our ontology-driven process of populat-
ing the intents, their training examples and entities extracted
from the domain ontology and the KB. The generation of
dialogue and use of conversation context for user interaction
will be described in Section 5.

4.2 Intent Generation
One of the formidable challenges of building an effective
conversation system is the identification of appropriate in-
tents that are 1) relevant to the domain of the data set and
can be answered using the data in the KB, and 2) relevant to
the user queries that are expected against the KB.

To address the above challenges, we first utilize the ontol-
ogy structure and instance data statistics in the KB to identify
relevant intents in terms of query patterns over the domain
ontology. We then utilize the domain expertise of SMEs to
identify user queries that are expected against the KB and
map them to the identified intents, or create additional in-
tents that are not covered by the query patterns extracted
from the ontology.

4.2.1 Leveraging ontology structure and data statistics. We
leverage the structural information of the domain ontology
and certain data statistics of the underlying data to identify
expected query patterns and ground our intents against those
patterns. First, we identify key concepts [25] (e.g., “Drug”, “In-
dication” ) that can stand on their own and usually represent
the domain entities that a common user would be interested
in. To determine these key concepts, we run a centrality anal-
ysis of the ontology graph, and rank the concepts according
to a centrality score. Then, we use statistical segregation [25]
to identify the top-k key concepts.

treats

Drug

Indication

Drug
InteractionRiskContra

Indication

BlackBox
Warning

isA

Concept

Relationship

DrugLab
Interaction

DrugFood
Interaction

Dosage

unionOf

unionOf

isA

cause

for

has

name
risk

mechanism

name

descroute

description

brand

Data
Property

note

summary

Precaution

has

deschas

Key Concept Dependent Concept Dependent Concept with special 
semantics: Union or Inheritance

Figure 2: Identify Key and Dependent Concepts.

Second, we find concepts in the immediate neighborhood
of each of these key concepts that are not key concepts
themselves. For each such concept, we gather data statistics
from the underlying knowledge base to find those that can
be identified as categorical attributes based on their number
of distinct data values. We mark these as dependent concepts
that can help describe the properties or attributes of the key
concept. For example, “Precaution” is a dependent concept
for the key concept “Drug” (shown in Figure 2). We also
mark dependent concepts that have special semantics in the
domain ontology such as union and inheritance and describe
how we utilize them later in this section.
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Finally, we identify several different query patterns around
the identified key and dependent concepts, and relationships
between them, and ground intents around these identified
patterns. We list these patterns below.

Lookup pattern. This pattern involves all pairs of iden-
tified key concepts and their dependent concepts. An intent
associated with the lookup pattern aims to find information
about the key concept with reference to a dependent concept.
The dependent concept here can be considered as a complex
attribute describing the key concept. Figure 3 shows an ex-
ample lookup pattern. Here “Drug” is the key concept and
“Precaution” is a dependent concept (an immediate neighbor
of “Drug” depicted in Figure 2) and the query is asking about
precautions associated with a particular drug.

Show me the Precautions for <@Drug>?

Dependent Concept Key Concept

Pattern 

Query

Instance of Key Concept

Show me the Precautions for Benazepril?

Figure 3: Lookup Pattern.

We also handle the cases when the identified dependent
concepts represent special semantics such as union or inheri-
tance with respect to other concepts in the domain ontology.
Case 1: Union. In this case, the identified dependent con-

cept is a union of other concepts in the ontology. For example,
“Risk” in Figure 2 is a union of concepts “Contra Indication”
and “Black Box Warning”. To handle this, the lookup pattern
containing a union concept as a dependent concept is aug-
mented with a set of patterns containing one query pattern
for each of the constituent concepts of the union concept. Fig-
ure 4 shows how a lookup pattern associated with “Risk” as
a dependent concept is augmented with two query patterns
containing “Contra Indications” and “Black Box Warning” as
dependent concepts. We associate all these query patterns
with the union concept to a single intent.

Show me the Risks associated with <@Drug>?

Dependent Concept: Union Key Concept

Pattern 

Additional 
Patterns

Key Concept

Show me the Contra-Indications associated with <@Drug>?

Dependent Concept 

Show me the Black Box Warnings associated with <@Drug>?

Dependent Concept Key Concept

Figure 4: Lookup Pattern with Special Semantics.

Case 2: Inheritance. In this case, the dependent concept
is a parent and related to other child concepts using an in-
heritance relationship. For instance, the dependent concept

“Drug Interaction” is a parent of “Drug Food Interaction” and
“Drug Lab Interaction” in Figure 2. Similar to union, lookup
patterns containing dependent concepts that are parents of
other concepts are augmented with a set of query patterns;
one for each child. Again, we associate all these query pat-
terns with the inheritance concept to a single intent.

Relationship pattern. This pattern involves pairs of key
concepts that are related to each other in the domain on-
tology through one- or multi-hop relationships. An intent
associated with this pattern aims to elicit information that
pertains to the relationship between the two key concepts.
It includes the following cases:
Case 1: Direct relationship pattern. The pair of identified

key concepts are connected via at least one direct (one-hop)
relationship between them. Multiple query patterns can be
generated for this case, one for each relationship between
the pair of identified key concepts. Consider the concepts
“Drug” and “Indication” identified as key concepts in Figure 2,
connected by the relation “treats”. Figure 5 shows examples
of this query pattern, and the corresponding example queries
that conform to this pattern: Pattern 1 includes the forward
relationship “treats” and Pattern 2 includes the inverse rela-
tionship “is treated by”.

What Indications are treated by <@Drug>?

Key Concept 2 Key Concept 1Inverse Relationship

Pattern 2

What Indications are treated by Aspirin?Query 1

Instance of Key Concept 1

What Drug treats <@Indication>?

Key Concept 1 Key Concept 2Forward Relationship

Pattern 1

What Drug treats Fever?Query 1

Instance of Key Concept 2

Figure 5: Direct Relationship Pattern.

Case 2: Indirect relationship pattern. The pair of identified
key concepts are connected via multiple hops of relation-
ships. A typical query associated with this pattern would
elicit information about the key concepts in the context of
the multi-hop relationship and the associated intermediate
concepts. For example, the key concept “Drug” is also con-
nected to the key concept “Indication” via two hops, with
“Dosage” as an intermediate concept (Figure 2). Figure 6 shows
examples of two query patterns that are associated with the
two identified key concepts “Drug” and “Indication”, and an
intermediate concept “Dosage”. Query pattern 1 elicits infor-
mation about all possible drugs and their dosage that treat
a particular indication (or condition). Here, indication is a
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filter condition, i.e., we would need to specify in the query an
instance of indication for which we need the drug and dosage
information. Query pattern 2 elicits information about the
dosage of a particular drug that treats a given indication (or
condition). Here, both drug and indication can be considered
as filter conditions.

Query 1 Give me the Drug and its Dosage that treats Fever

Give me the Drug and its Dosage that treats <@Indication>Pattern 1

Key Concept 1 Key Concept 2RelationshipIntermediate Concept 1

Give me the Dosage for <@Drug> that treats <@Indication>Pattern 2

Key Concept 1 Key Concept 2RelationshipIntermediate Concept 1

Query 2 Give me the Dosage  for Aspirin that treats Fever

Figure 6: Indirect Relationship Pattern.

In addition to identifying all query patterns as described
above, we also use the ontology structure to generate addi-
tional meta-data that would help in the completion of partial
queries using conversation interactions, as described later
in Section 5. For each identified key concept, we create a list
of dependent concepts associated with it. Similarly, for each
identified dependent concept we create a list of key concepts
associated with it. This meta-data is then passed on to the
dialogue structure, which utilizes them to prompt users to
complete a partial query. For example, if a user mentions a
partial query “Show me Precautions”, the conversation inter-
face prompts the user to complete the query by specifying
the drug whose precautions are requested, as “Drug” is the
key concept associated with “Precautions”.

4.2.2 Use of domain expertise and prior user experience. Hav-
ing identified relevant intents in terms of query patterns over
the domain ontology, we utilize the domain expertise of SMEs
and prior user experience to identify user queries that are
expected against the knowledge base to address challenge (2).
We have developed tooling that allows SMEs to interact with
our domain ontology, and mark expected query patterns as
annotations to the OWL description of relevant concepts
and relationships between them. We associate each such
SME-identified query pattern to a pattern already identified
using the ontology structure as described above. If no intent
exists, we create a new query pattern and its associated new
intent. In addition to this, we also rely on SME experience
to prune any query patterns that are unlikely to be part of a
real world workload against the knowledge base.

4.3 Intent Training
To identify intents from user utterances, the intent classifier
relies on training examples. The distribution of generated

training examples for different intents, and the methodology
for training the classifier model have a direct impact on its
accuracy. In this section, we discuss our techniques for gen-
erating training examples for each identified intent (or query
pattern) and provide details of our training methodology.

4.3.1 Automatic generation of intent training examples. We
have developed pattern matching algorithms that traverse
the domain ontology graph and extract the identified query
patterns as subgraphs over the ontology. The algorithms also
identify the entities and relationships in these subgraphs,
and query the underlying knowledge base to access instance
data corresponding to the ontology concepts to generate the
training examples. For example, consider the lookup pattern
Show me <dependent concept> for <@Key Concept>. The
pattern consists of three parts: (1) The initial/start phrase:
Show me, (2) <Dependent concept>, and (3) <@Key Con-
cept>. We traverse the domain ontology and identify all
subgraphs containing pairs of key and dependent concepts
such as “Drug” and “Precaution”, “Drug” and “Dosage”, “Drug”
and “Adverse Effects”, etc. For each identified dependent con-
cept, we look up the instance values of the Key concept from
the knowledge base and create the corresponding training
examples with different paraphrases of the initial phrase.

Show me the Precautions for <@Drug>?

Dependent Concept Key Concept

Lookup 
Query
Pattern Initial Phrase

Training 
Examples

Instances of Key Concept

Show me the Precautions for Aspirin?
Tell me about the Precautions for Ibuprofen?
Give me the Precautions for Ibuprofen?

Figure 7: Intent Training Examples.

Figure 7 shows an example lookup pattern, and corre-
sponding training examples generated for this pattern using
the dependent concept Precaution from the ontology, in-
stances of the key concept Drug, e.g., Aspirin and Ibuprofen,
taken from the knowledge base, and different paraphrases
of initial phrase, e.g., Give me, Show me, Tell me about. The
initial phrases are provided to the training example gener-
ation process as a list, one for each type of query pattern.
The training example generation process randomly picks an
initial phrase from the appropriate list, depending on the
query pattern for which the example is being generated.

4.3.2 Intent training methodology. As described in earlier,
we generate training examples for each identified intent
using an automated process. In addition to these examples,
we augment the training data set with examples from prior
user queries against the KB labelled with the desired intents
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with the help of SMEs. This allows us to increase the coverage
for the possible ways users can ask a particular question.
Figure 8 shows an example lookup query pattern which
is asking for the dosage adjustment for a particular drug.
The figure shows training examples that are automatically
generated using the domain ontology, as well the augmented
examples provided by SMEs.

Show me the Dose Adjustment for <@Drug>?

Dependent Concept Key Concept

Lookup 
Query
Pattern 

Auto Generated 
Training 
Examples

Instances of Key Concept

Show me the Dose Adjustment for Aspirin?

Initial Phrase

Tell me about the Dose Adjustment for Ibuprofen?
Give me the Dose Adjustment for Ibuprofen?

Training 
Example 
Augmentation
From Prior 
User Queries

Find Dose Adjustment for Aspirin?
Give me the increased dosage for Aspirin?
How do I perform a Dose Adjustment for Aspirin?
I want to see the modifications to dosing for Aspirin?

Figure 8: Augmentation of Intent Training Examples.

4.4 Structured Query Template Generation
We associate each identified intent with a Structured Query
Template. This template is used to generate a structured
query against the KB to retrieve results in response to the
identified intent in a given user utterance. As part of the
offline bootstrapping process, we use the NLQ service [29]
to generate a structured query for each intent generated by
the bootstrapping process. The NLQ service takes as input
a natural language query example corresponding to an in-
tent, interprets the query against the domain ontology and
generates a structured SQL query. We parameterize this SQL
query to generate a structured query template for each intent
in the conversation space. This intent-to-structured-query-
template mapping is utilized by the dialogue tree structure
(Section 5). The identified entities in the user utterance are
used to populate the template to generate the actual SQL
query to be executed against the KB to retrieve results.
Figure 9 shows an example lookup query pattern, and

its corresponding natural language training example, which
is input to the NLQ service to generate the SQL query. A
structured query template is generated from the SQL query
by replacing the filter condition with a parameter marker for
the drug name. This template will be instantiated with the
corresponding entities at run time to generate an SQL query.

4.5 Entity Extraction
In this section, we describe our process for entity extraction
and its population in the conversation space to provide the
domain vocabulary. The process involves three steps.

Show me the Precautions for <@Drug>?

Dependent Concept Key Concept

Lookup 
Query
Pattern 

Training 
Example

Initial Phrase

Give me the Precautions for Ibuprofen?

Well-formed
Query (SQL)

SELECT oPrecautions.description
FROM Precautions oPrecautions INNER JOIN Drug oDrug
WHERE oPrecautions.for=oDrug.DrugID
AND oDrug.name = ‘Ibuprofen’

Structured 
Query 
Template

SELECT oPrecautions.description
FROM Precautions oPrecautions INNER JOIN Drug oDrug
WHERE oPrecautions.for=oDrug.DrugID
AND oDrug.name = ‘<@Drug>’

Figure 9: Structured Query Template Generation for
Each Intent.

First, we add all the concepts (e.g., Drug, Precautions,
Dosage, etc.) in the domain ontology as a set of entities
so that they can be recognized by the conversation space
when mentioned in a user utterance. In addition to this, we
also capture as entities the grouping of concepts using union
and inheritance concepts in the domain ontology.

Second, for each key concept and dependent concept added
as an entity and that can be considered as a categorical at-
tribute we query the KB to retrieve data instances corre-
sponding to it and add them as example entities for that
concept. For example, for the entity “Drug” we add examples
such as Aspirin, Ibuprofen, Tylenol, etc.

Finally, we add domain-specific synonyms using dictionar-
ies for both the ontology concept names and data instance
values if available. Adding synonyms is a crucial step to al-
low a greater recall of queries that can be answered by the
conversation space. Table 1 provides a sample population
of entities in the conversation space and Table 2 shows a
dictionary of synonyms for the ontology concepts.

Table 1: Sample Entity Population.

Entity Examples
Concepts Drug, Precautions, Dosage, Indication

[Ontology Concepts]
Risk Contra Indication, Black Box Warning

[Concepts under Risk]
Drug Interaction DrugFoodInteraction, DrugLabInteraction

[Concepts under Drug Interaction]
Drug Aspirin, Ibuprofen, Citicoline, Pancreatin

[Instances of Drug]

4.6 Discussion
The accuracy of user intent classification for natural lan-
guage queries against the KB is dependent on a clear sepa-
ration of intents and their training examples. The absence
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Table 2: Sample Entity Synonym Population.

Entity Synonyms
Adverse Effect Side effect, adverse reaction, AE
Condition disease, finding, disorder
Drug medicine, meds, medication, substance
Precaution caution, safe to give
Dose adjustment dosing modification, dose reduction

of such separation can cause ambiguity and wrong intent
classifications, leading to poor user experience. As described
in Section 4.2 our intents are based on patterns identified
using the structure of the ontology. Each look-up pattern
is focused on exploring information about one specific key
concept with reference to one dependent concept. Similarly,
each relationship pattern aims to elicit information pertain-
ing to one specific relationship between a pair of identified
key concepts. Each key concept and its individual relation-
ships are unique, thus providing a clear separation of intents.
Furthermore, there is sufficient linguistic variability in the
training examples associated with each intent to train an
effective classifier. The accuracy of our intent generation
and training process is further demonstrated with the high
F1-scores associated with each identified intent in Section 7.

5 DIALOGUE TREE
In this section, we describe the construction of the dialogue
structure of the conversation space in terms of a dialogue
tree. This tree provides a structural representation of the flow
of conversation and is used to specify all possible conver-
sational interactions that the conversation interface/agent2
is required to support. We first provide an overview of the
dialogue tree and then describe the components in detail.

5.1 Dialogue Tree Overview
While intents and entities generated from the ontology en-
able the domain-specific natural language understanding
or the analysis of what the user says, system responses or
what the agent says is determined by the dialogue tree. At
a high level, the dialogue tree defines the space of all user
utterances that the system can recognize and all responses
that it can generate. The dialogue tree consists of a set of
responses conditioned on the combination of intents and en-
tities identified from the user utterance, as well as contextual
information captured from previous utterances. For example,
if the natural language understanding component determines
that a user’s utterance contains an intent to lookup informa-
tion about a drug that treats a particular condition and also
identifies the entities psoriasis and adult, the combination of

2We use conversation interface and agent interchangeably in this paper.

these conditions will trigger a particular response from the
dialogue tree, such as “Drugs treat psoriasis for adults”.
Figure 10 shows an example dialogue tree and two dif-

ferent conversation flows in response to two different user
inputs. In Figure 10(a), the system detects that the user input
matches with intent2. It then checks for the mention of a re-
quired entity entity2. Since entity2 is not present, it prompts
the user with an elicitation of entity2. In Figure 10(b), the
user input matches intent2 and contains entity2 and so the
agent provides the desired response for intent2.

intent1

START

intent2

intent3

DEFAULT

entity2

response2

DEFAULT

User input matches 
intent2 but does not 
contain entity2 so 
Agent produces an 
elicitation of entity2.

(a) Dialogue Tree Response 1

intent1

START

intent2

intent3

DEFAULT

entity2

response2

DEFAULT

Next user input 
contains entity2, which 
is added to the context, 
so Agent produces the 
response to intent2.

(b) Dialogue Tree Response 2

Figure 10: Dialogue Tree.

5.2 Components of Dialogue Tree
We build the dialogue tree in three steps: (1) We create a
specification called Dialogue Logic Table, for the domain-
specific requests and populate it with the artifacts extracted
from the domain ontology as described in Section 4. (2) We
build a dialogue tree to specify the conversation flow for
those requests specified in the dialogue logic table, (3) the
dialogue tree is augmented with additional nodes to handle
domain-independent conversation management actions. We
explain each of these steps below.

Step 1: The intents, entities and their relationships derived
from an ontology are represented in the form of a Dialogue
Logic Table (Table 3). The first column contains names for
each intent. The second column contains a sample of ex-
amples that are used to train the natural language classifier
for each intent. Each example consists of a different frame
and may or may not contain key entities. The intent exam-
ples help a human designer understand the intent, while
designing the corresponding conversation flow and appro-
priate response for the intent. The third column contains
required entities, or entities uponwhich the intent is logically
dependent. These are obtained from the query completion
mappings generated from each query pattern (Section 4.2.1).
The dialogue tree must either assume a value of a required
entity or elicit a value for it from the user. The fourth column
contains agent responses for eliciting each required entity in
the form of an elicitation template. The template is populated
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Table 3: Generic Dialogue Logic Table.

Intent Name Intent Example Required Agent Elicitation Optional Agent Response
Entity Entities

intent1 Intent example entity1 entity1 Elicitation template entity2 Response template variable1
intent2 Intent example entity2 entity2 Elicitation template entity3 Response template variable2

with appropriate entities that are required. The fifth column
contains optional entities, which will be captured if present
but will not be elicited if absent. And the last column con-
tains responses from the agent given the intent plus entities.
Agent responses consist of a response template within which
variable values obtained from the KB can be inserted.

Step 2: Once the logic of the queries and the desired di-
alogue is specified in table form, a dialogue tree can easily
be generated from it, either manually or in an automated
fashion. A dialogue tree, for example in Watson Assistant
platform, is built out of structures of nodes, which consist of
(1) a set of conditions, such as a combination of an intent and
entity, (2) a set of context variables, to which information
from the conversation can be stored, and (3) a text response
from the agent. The Dialogue Logic Table specifies the set
of conditions for each type of response or elicitation by the
agent. If all required entity types for a given intent type are
present in the context, the dialogue tree triggers the corre-
sponding response. However, if a required entity is absent,
the dialogue tree triggers an elicitation, or request by the
agent for that entity type. This mechanism is referred to as
“slot filling” in dialogue design shown in Figure 10.

Step 3: The dialogue tree for the domain-related requests
is augmented with additional nodes for handling conversa-
tion management. This includes generic intents and entities
for managing the interaction itself. Conversation manage-
ment actions are domain-independent. For example, “okay”
or “thanks” are commonly used to acknowledge the comple-
tion of a conversation sequence. Whereas, “never mind” is
commonly used to abort a failed sequence. “What did you
say?” is commonly used to elicit a repeat of the prior ut-
terance. And “What do you mean?” is commonly used to
elicit a paraphrase of the prior utterance [24]. Currently, con-
versation management features are not tied to the domain
ontology. They are domain-independent and therefore can
be reused across domains and use cases.

We use a generic template for a natural conversation space
and insert the domain-specific dialogue structures into the
dialogue tree. Our template contains 32 generic patterns for
“sequence-level management” and 39 generic patterns for
“conversation-levelmanagement” [24]. For example, one such
interaction pattern, B2.5.0 Definition Request Repair, shows
what to do when the user indicates difficulty in understand-
ing a particular term used by the agent. More specifically the

agent provides a definition for it. An example of this patterns
can be found in Section 6.3.

B2.5.0 Definition Request Repair
1 A: <ANY UTTERANCE>
2 U: DEFINITION REQUEST
3 A: REPAIR MARKER + DEFINITION

Finally, as a conversation designer we build a persistent
conversation context using all variables in the dialogue tree.
In other words, the intents and entities from prior user ut-
terances are persisted, or “remembered”, across turns in the
interaction. Technically persistent context means that the
agent’s responses are conditioned both on the words the
user is saying in the current utterance and relevant words
said by the user or the agent in prior utterances. This dif-
fers from other natural language interaction models, such
as that of web search engines, in which each next query is
independent of that last. As a result of persistent context,
users can build up a single query across multiple utterances
and modify it incrementally in subsequent turns, like in a
human conversation.

6 USE CASE - MICROMEDEX (MDX)
In this section, we describe Conversational MDX, a conver-
sation system for a medical knowledge base (KB), built and
deployed using our ontology-driven approach. The user in-
terfaces of Conversational MDX can be found in Appendix A.

6.1 MDX Overview
Micromedex is an evidence-based clinical decision support
application, consisting of summary and expanded content
from the world’s biomedical literature covering drug infor-
mation, toxicology, diseases and conditions, and alternative
medicine. Introducing a conversation interface to MDX al-
lows doctors, nurses, and pharmacists to ask drug reference
questions from specific content within Micromedex, such as
drug treatments for conditions, drug dosages, drug interac-
tions, and additional attributes of drugs.

We applied the ontology creation process described in [18]
to the MDX KB. The generated domain ontology consists
of 59 concepts, 178 properties, and 58 relationships. The
relationships in the ontology include functional, inheritance,
and union. A snippet of the ontology is provided in Figure 2.
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Table 4: Dialogue Logic Table for MDX.

Intent Name Intent Example Required Entities Agent Elicitation Optional Agent Response
Entities

Treatment Show me drugs that Condition, For which condition? Severity Here are the drugs that
Request treat psoriasis? Age group Adult or pediatric? Efficacy treat Psoriasis for pediatric...
Dosage Give me the dosage Drug, Condition For which drug? Condition Here is Tazarotene dosing
Request for Tazarotene for acne? Age Group Adult of pediatric? for pediatric...
Drug Inter- What are the drug Drug, Interaction For which drug? Severity Aspirin is contraindicated with...
action Request interactions for Drug-drug or Condition

aspirin? other interactions?

MDX Intent Generation. Following our techniques de-
scribed in Section 4, we generated a total number of 22 intents
corresponding to different query patterns from the ontology
including 14 lookup and 8 relationship patterns. We added
14 intents for conversation management including repair
requests like definition requests, repeat requests, positive
acknowledgement, etc. Additionally, based on SME input,
we also added some intents to handle the case when users
mention only an entity name (more like a keyword search).
We used some popular entities like Drug and created an in-
tent DRUG_GENERAL that would capture cases when a user
only mentions a Drug name as input. We provide further
details on how we handle this case in Section 6.3.

MDX Entity and SynonymGeneration.We populated
a total of 52 entities for the MDX conversation space, includ-
ing concepts from the MDX ontology (like Drug, Finding,
Indication, etc.), and data instances corresponding to these
concepts from the MDX KB. We also added synonyms both
for entities captured from the ontology (Table 2) and the data
instances. For example, for each drug name, we also added
its brand name and base with salt description that refer to
the same drug. Drug Cyclogel also has a brand name Cylate
and a base and salt description Cyclopentolate Hydrochloride.

Partial Entity Matching (Entity Disambiguation). In
prior user queries against the MDX KB, we noticed that some
times users also mention entities, especially drug names with
their partial names or partial base with salt descriptions. To
handle such cases, we capture such partial entity names
in the user utterances and search the MDX knowledge to
retrieve entities that contain these names. For example, if
a user only enters the base Calcium for a drug, then the
system helps the user select a salt Calcium Carbonate from
the possible combinations of salts with this base in the KB.

6.2 MDX Dialogue Tree
We built the dialogue infrastructure as described in Section 5
to support the extracted intent and entities, and enable con-
versational interaction to query the MDX KB. Table 4 shows
the Dialogue Logic Table that is generated for the MDX use
case. Table 4 illustrates how three kinds of MDX request

types can be specified: Treatment (Direct Relationship) re-
quest, Dosage Request (Indirect Relationship) for a Drug,
Condition and Lookup Request for Drug Interaction a Parent
concept (column 1). One example is given of each intent
(column 2), although in practice, it would contain many vari-
ations of the same intent. A list of required entities for these
intents is given (column 3), along with agent elicitation tem-
plates (column 4) populated for each required entity. Shared
optional entities (column 5) and agent response templates to
each intent are provided (column 6) are provided.

6.3 MDX Conversation Space
Below is an example interaction with Conversational MDX,
which demonstrates the utilization of the components of a
conversation space.

MDX Sample conversation Interaction
01 A: Hello. This is Micromedex. If this is your first time, just

ask for help. How can I help you today?
02 U: show me drugs that treat psoriasis
03 A: Adult or pediatric?
04 U: adult
05 A: Okay. Here are the drugs that treat psoriasis for adults:

Effective: Acitretin, Adalimumab...
06 U: I mean pediatric?
07 A: Here are the drugs that treat Psoriasis for pediatric:

Effective: Fluocinonide, Salicylic Acid...
08 U: what do you mean by effective?
09 A: Oh. Effective is the capacity for beneficial change (or

therapeutic effect) of a given intervention.
10 U: thanks
11 A: You’re welcome! Anything else?
12 U: dosage for Tazarotene
13 A: Here is Tazarotene dosing for pediatric:

Plaque psoriasis Tazorac(R) gel (12 years and older);
initial, apply 0.05% gel TOPICALLY every night to
affected area; may increase to 0.1% gel or cream
TOPICALLY every night if indicated and tolerated.

14 U: how about for Fluocinonide?
15 A: Here is Fluocinonide dosing for pediatric: Plaque

psoriasis 12 years or older; TOPICAL, apply 0.1% cream
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once or twice daily to the affected area for maximum of
2 consecutive weeks and 60 grams/week.

16 U: thanks
17 A: You’re welcome! Anything else?
18 U: no
19 A: Thank you for using Micromedex. Goodbye.
20 U: goodbye

The conversation begins with an opening of the conversa-
tion, in which the agent greets the user, identifies the appli-
cation, gives a tip and offers help (line 1). This is one example
of conversation management. The user responds with his first
request (line 2). The agent responds by attempting to elicit
a required detail, the age grouping for the intended patient
(line 3). Only after providing this required detail (line 4) does
the agent fulfill the request by providing a list of drugs (line
5; most of list omitted). The user thus makes his request
across two utterances (lines 2 and 4), which is made possible
by the persistent context.

While agent elicitation of required details follows the stan-
dard pattern of “slot filling” in dialogue design, the inter-
action goes beyond this pattern. Once a complete query is
constructed (lines 02-05), it can be incrementally modified
in subsequent turns. For example, the user changes his mind
by saying “I mean pediatric.” In this case, rather than treat-
ing the incremental specification (line 6) as an inadequate
request, the conversation treats it as an operation on the pre-
vious request if it contains intents and entities related to that
request. In response, the agent fulfills the new request (line
7). The user therefore does not need to repeat the elements
of the prior query.
In addition to the conversation opening (line 1), another

instance of conversation management occurs when the user
requests a definition of a term used by the agent, “effective”
(line 8). This is an example of a “repair” [24] on the mean-
ing of part of the agent’s prior utterance, namely, its use
of the word “effective” in this context. Repairs may involve
part or all of a previous utterance regarding a problem in
understanding or hearing it [30]. As a conversation space,
the MDX agent recognizes the repair intent and offers a def-
inition of the specified term (line 9). Further conversation
management occurs in the transition between topics or re-
quest types. After receiving the definition, the user produces
an appreciation (line 10) signaling a close of that topic. The
agent receipts the appreciation and checks for a last topic
(line 11), to which the user produces a new request (line 12).

Because the user’s new request, a dosage request (line
12), shares entities with his previous drug request, the agent
assumes the other entities, psoriasis and pediatric from the
conversation context, and fulfills the request without elicit-
ing them (line 13). The user then produces an incremental

request by inquiring about a different drug (line 14). The
agent again assumes the previous condition and age group
and fulfills the request (line 15). After these dosage requests,
the user again closes the topic with an appreciation (line 16),
which the agent receipts before checking for a last topic (line
17). This time the user indicates no further topics (line 18) so
the agent initiates the closing of the conversation (line 19),
which the user reciprocates (line 20).

While the above conversation space followsmany patterns
of users’ general conversational competence, users often
do not expect the agent to recognize actions beyond valid
queries. For example, the following interaction, from MDX
user logs, illustrates a common pattern: users treat the agent
like a search engine.

MDX User 480
01 U: cogentin
02 A: Would you like to see the precautions of benztropine
mesylate?
03 U: What are the side effects of cogentin
04 A: Would you like to see the benztropine mesylate adult
dosing?
05 U: no
06 A: OK. Please modify your search.
07 U: cogentin adverse effects
08 A: Here are the adverse effects of benztropine mesylate:
(results)

This user formulates her initial request as a single keyword
“cogentin” (line 1), a brand name for the drug, benztropine
mesylate. While this formulation might be adequate for a
search engine, it is inadequate for the conversation space of
the MDX agent, which is built on an intent + entity model,
rather than on a keyword or entity-only model. As a result,
the agent attempts to elicit an intent, by proposing that the
intent might be the precautions the drug (line 2), one of the
dependent concepts of Drug (Section 4.2.1). However, the
user rejects this proposal by providing a different one, “side
effects of” the drug (line 3). Even with the reformulated
request, the agent fails to recognize the user’s intent and
proposes yet another query pattern, “dosing for poisoning”
(line 4). When the user rejects this proposal, the agent gives
up and requests a new formulation, or “search” (lines 5-6).
Finally on the third attempt, the user says, “cogentin ad-

verse effects” (line 7). Although this is still formulated like
a keyword query, rather than a conversational utterance, it
contains both a dependent concept, “adverse effects”, and a
required key concept drug: “cogentin”. The agent now rec-
ognizes the request as a lookup request for drug and fulfills
it with a list of adverse effects (line 8).
There are two apparent sources of trouble in the above

interaction. First, the user initially formulates his/her request
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as an entity (line 1) instead of as an intent (a query pattern)
+ entity. The user thereby treats the interaction more like a
web or database search interaction than a conversation. The
interaction eventually succeeds when the user formulates
his/her request as an entity + intent (line 7). The agent works
best for requests formulated as intent+entity, such as “what
are the adverse effects of cogentin?” Second, the agent failed
to recognize “side effects” (line 3) as a synonym of “adverse
effects” (line 4). The former is a more common, although
less technical, way to refer to the unintended or negative
effects of a drug. Through such user testing, synonyms and
alternative phrasings are identified and added to the training
data for MDX.

7 EXPERIMENTAL EVALUATION
All the components of Conversational MDX are hosted on
IBM Cloud, including the conversation interface (i.e., Wat-
son Assistant) and the knowledge base (stored in Db2 on
Cloud). The conversation artifacts described in Section 6 are
uploaded to an instance of Watson Assistant. Uploading the
artifacts, including training and test data for intent training,
triggers the natural language classifier to train the model
for Watson Assistant. Watson Assistant returns an intent
detected corresponding to each user utterance with a confi-
dence score. In this section, we first evaluate the effectiveness
of the bootstrapping process in terms of F1-score. Then, we
show the usage statistics in terms of success rate per intent.

7.1 Evaluation of Bootstrapping Process
To evaluate the effectiveness of the bootstrapping process
described in Section 4, we split the augmented set of training
examples into training and test sets, covering a total number
of 36 intents. We ensure that the distribution of the training
and test sets are similar to the real intent statistics collected
from the real usage (Table 5). The evaluation results for
the bootstrapping process against the test set are reported
in Table 5. The average F1-score of the trained classifier
across all intents is 0.85. This high F1-score confirms that the
training examples generated by the bootstrapping process
lead to a classifier that is robust with respect to linguistic
variations. This is further supported by the actual usage
statistics that are described next.

7.2 MDX Usage Statistics
In this section, we report Conversational MDX usage statis-
tics (i.e., all user interactions with Conversational MDX) over
a period of 7 months (01/2019 - 07/2019). The users in this
study are doctors, nurses, and pharmacists fromhospitals, life
sciences companies, and state & federal government agencies.
Table 5 presents the 10 most frequently used intents. These
top-10 intents account for 75% of the total user interactions.

Table 5: Top-10 Intent Detection Effectiveness.

Intent Name Usage F1 Score
Drug Dosage for Condition 15% 0.85
Administration of Drug 12% 0.88
IV Compatibility of Drug 11% 0.86
Drugs That Treat Condition 10% 0.82
Uses of Drug 9% 0.99
Adverse Effects of Drug 5% 0.84
Drug-Drug Interactions 4% 0.88
DRUG_GENERAL 4% 0.65
Dose Adjustments for Drug 3% 0.95
Regulatory Status for Drug 2% 0.93

Note that 4% of the interactions (i.e., DRUG_GENERAL) start
with only a drug name. This indicates that some users still use
Conversational MDX as a traditional search system. Hence,
our Conversational MDX is designed to follow up with users
to elicit what aspects of a drug they want to learn about.
According to the usage statistics, we now evaluate the

effectiveness of Conversational MDX based on actual user
feedback. The evaluation process is based on the feedback
buttons (thumbs up/down) with which the users can express
their satisfaction (see bottom right of Figure 14). From man-
ual inspection of the data, we observe that positive feedback
(thumbs up) button is rarely used for user interactions that
provide correct information. In the opposite case, we ob-
serve that negative interactions are usually accompanied by
a negative feedback (thumbs down). This observation is also
supported by the extensive user studies in [31]. Therefore,
we consider the negative feedback more credible, and we
define success rate as the number of interactions that were
not marked as negative, compared to the total number of
interactions:

success rate =
#interactions − #neдative interactions

#interactions .

(1)
In total, the success rate of our system is 96.3%. Among

the negative interactions, we observe a considerable num-
ber of noisy cases, including meaningless utterances (e.g.,
’apfjhd’), and cases in which users accidentally pushed the
thumbs down button, and then immediately pushed the
thumbs up button (based on a manual inspection of some of
those cases, we found that they were correctly answered). We
still count those cases as negative. For a more fine-grained
evaluation, we also report the success rates per intent, by
replacing #interactions in Equation 1 with the number of
interactions for a specific intent. For illustration purposes,
we only present the results for the 10 most frequently used
intents, as in Table 5. The fine-grained results are presented
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in Figure 11. The length of each bar (i.e., the horizontal axis)
corresponds to the number of interactions having the cor-
responding intent. Each bar is split into two partitions: the
dashed partition on the right corresponds to the percentage
of interactions that received negative feedback, and the gray
partition on the left, corresponds to the remaining interac-
tions. The success rates per intent are shown at the right of
each bar. We observe that the success rates for those 10 most
frequent intents are all higher than the total average (96.3%).
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Figure 11: Success Rate per Intent (Provided by Users,
Top-10 Intents).
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Figure 12: Success Rate per Intent (Provided by SMEs,
Top-10 Intents in a Sample of the Full Data Set).

One drawback of the way we have defined success rate
(Equation 1), is that we may have missed cases in which the
users did not provide negative feedback, but were still not
satisfied by the provided answers. For a completely accurate
measurement, we would need to enforce users to provide pos-
itive/negative feedback, which would jeopardize the usability
of our system, and it would imply a pre-set experimental
environment, instead of actual users and real interactions.
To alleviate this drawback, we have also performed a second
evaluation on a random sample of the 7-month interactions
data set (approximately 10% of the full data set), in which
SMEs marked every interaction as either positive or negative.
The success rate for this sample, when the #neдative

interactions in Equation 1 is determined by the users’ feed-
back (thumbs down), is 97.9%. The corresponding success

rate provided by the SMEs for the same sample is slightly
lower, accounting to 90.8%. The fine-grained evaluation per
intent, for the 10 most frequent intents in this sample, is
presented in Figure 12. The SMEs observed that many of
the negative interactions are again, due to incorrect input of
the users, such as heavy misspellings, while some times the
users did not answer with a yes/no to our system’s follow-up
questions, which would have resulted in providing them the
correct answer. Taking this valuable feedback into account
helps us work on improvements of our system that will fur-
ther decrease the number of negative interactions, mainly
occurring due to incorrect user input.

8 RELATEDWORK
General-purpose conversation systems. Over the years,
conversation systems are fundamental to natural user in-
terfaces. It is a rapidly growing field, leveraging the break-
throughs in deep learning (DL) and reinforcement learn-
ing (RL). According to [14], conversation systems can be
grouped into three categories: (1) question answering agents,
(2) task-oriented dialogue agents, and (3) chatbots. Compa-
nies, including Google, Microsoft and Baidu, have incorpo-
rated multi-turn QA capabilities into their search engines to
make user experience more conversational. Their QA Sys-
tems are designed for retrieving candidate documents from
Web Index [28] or answering factual questions from knowl-
edge graphs [33]. Nowadays publicly available and commer-
cial chatbot systems [20, 27, 37] are often a combination of
statistical methods and hand-crafted components, where sta-
tistical methods provide robustness to conversation systems
(e.g., via intent classifiers) while rule-based components are
used in practice, e.g., to handle common chitchat queries.
Our conversation system falls in the task-oriented dia-

logue category. Task-oriented dialogue systems [9, 14] can
perform a range of tasks or services for a user. The most
widely used systems include Apple’s Siri, Google Assistant,
Amazon Alexa, and Microsoft Cortana, among others. Our
system separates itself from these systems since it is de-
signed for domain-specific KBs using domain ontologies,
which provides a powerful abstraction of the data in terms
of the entities of the domain and their relationships.

Conversation systems in healthcare. There have been
increasing research and commercial interests showing the
potential benefits of using conversation systems/agents for
health-related purposes. Recent advances in machine learn-
ing, particularly in neural networks, has allowed for more
complex dialogue management methods and more conver-
sation flexibility. Three approaches are commonly used in
building a conversation system for healthcare applications.
Rule-based approaches [21, 22] used in finite-state dialogue
management systems are simple to construct for tasks that
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are straightforward and well-structured, but have the dis-
advantage of restricting user input to predetermined words
and phrases, not allowing the user to take initiative in the
dialogue, and making correction of mis-recognized items
difficult. Hence the rule-based conversation systems are com-
monly used in task-oriented, mostly focusing on information
retrieval tasks such as data collection or a predefined clinical
interview guide. Frame-based systems [5, 13, 15] address
some of the limitations of finite state dialogue management
by enabling a more flexible dialogue. Frame-based systems
do not require following a predefined order to fill-in the nec-
essary fields, enabling the user to provide more information
than required by the system’s question — the conversation
system keeps track of what information is required and asks
its questions accordingly.

Unlike finite-state and frame-based systems, agent-based
systems [7, 23, 26, 34] are able to manage complex dialogues,
where the user can initiate and lead the conversation. Agent-
based methods for dialogue management are typically sta-
tistical models trained on corpora of real human computer
dialogue, offering more robust speech recognition and per-
formance, as well as better scalability, and greater scope for
adaptation. One disadvantage of agent-based systems is that
they require large training data, which can be difficult to
obtain in healthcare applications. An in-depth study of the
conversation agent in healthcare can be found in [6, 17].

Natural language interfaces to databases. In recent
years, natural language interfaces (NLI) for databases have
gained significant traction both in academia and industry.
These NLIs fall into four categories based on the methodol-
ogy being used: keyword-, pattern-, parsing- and grammar-
based NLI. Keyword-based systems [4, 8, 16] are capable
of answering simple questions by matching the given key-
words against an inverted index of the instance- and meta-
data. Pattern-based systems extend the keyword-based sys-
tems [11, 35] with NL patterns to answer more complex
questions like aggregations. However, these systems still
suffer from identifying every possible synonym of trigger
words (e.g., “by” for the aggregation) allowed by NL. The
core of Grammar-based NLIs [12, 32] is a set of rules (gram-
mar) that define the questions that can be understood and
answered by the system. Using those rules, the system is able
to give the users suggestions on how to complete their ques-
tions during typing. The disadvantage of these systems is
that they are highly domain-dependent: the rules need to be
written by hand. Parsing-based [19, 29] NLIs parse the input
question and use the information generated about the struc-
ture of the question to understand the grammatical structure.
These systems leverage the dependency parser to handle
the difficulty of verboseness in complex NL patterns. Our
query generation adopts the techniques introduced in [29]

and generates SQL queries corresponding to NL queries from
Watson Assistant.

A new promising research direction is to use deep learning
techniques as the foundation for NLIDBs [3, 10, 36]. The basic
idea is to formulate the translation of NL to SQL as an end-
to-end machine translation problem. In general, these new
approaches show promising results, but they have either
only been demonstrated to work for single-table data sets
or require large amounts training data. Hence, the practical
usage in realistic database settings still needs to be shown. An
in-depth study of the natural language interfaces to databases
can be found in [2].

9 CONCLUSION AND LESSONS LEARNED
In this paper, we described an ontology-based conversation
system and its application to a medical KB. Our techniques
are domain agnostic, and can be applied to any KB. We use
the domain ontology to bootstrap the conversation space,
and refine it with the help of SMEs.
We learned several valuable lessons from our experience

of building a conversation interface for a medical KB. We
highlight some of them here. We realized that a lot of users
still use the conversation interface as a search interface, and
provide only keywords (such as drug names) as input. We
do provide support for such cases wherein the system elicits
additional information from the user for the mentioned key-
word, and provides an appropriate response to the user. We
believe that dependence on keyword search would reduce as
users get exposed to more conversation interfaces in general.
Access to prior user queries against the MDX KB and SME
expertise was a great help in understanding all the different
ways users can express their request for a particular piece of
information. This helped us in our system design, especially
in intent training and entity-synonym population. Actual
system usage also showed us that users mention entities
with their partial names. So we added support for helping
users to complete their specifications in order to provide an
appropriate response. This is our first attempt at building
a conversation interface in the medical domain, and we be-
lieve that there is a lot of room for further improvement to
enhance user experience. One such example is learning from
the system usage logs, and using that as a feedback to further
improve the system.
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APPENDIX
A MDX USER INTERFACE
Figure 13 shows that IBM Micromedex, powered by Wat-
son Assistant, provides an access to medical information by
bypassing the keyword search process in favor of natural
language queries.

Figure 13: Conversational MDX.

Figure 14 illustrates how IBM Micromedex interacts with
users and retrieves answers to user questions with natural
and conversational search capabilities.

Figure 14: Sample Interactions.
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