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ABSTRACT
Medical knowledge bases (KBs), distilled from biomedical literature
and regulatory actions, are expected to provide high-quality infor-
mation to facilitate clinical decision making. Entity disambiguation
(also referred to as entity linking) is considered as an essential task
in unlocking the wealth of such medical KBs. However, existing
medical entity disambiguation methods are not adequate due to
word discrepancies between the entities in the KB and the text
snippets in the source documents. Recently, graph neural networks
(GNNs) have proven to be very effective and provide state-of-the-
art results for many real-world applications with graph-structured
data. In this paper, we introduce ED-GNN based on three repre-
sentative GNNs (GraphSAGE, R-GCN, and MAGNN) for medical
entity disambiguation. We develop two optimization techniques to
fine-tune and improve ED-GNN. First, we introduce a novel strat-
egy to represent entities that are mentioned in text snippets as a
query graph. Second, we design an effective negative sampling strat-
egy that identifies hard negative samples to improve the model’s
disambiguation capability. Compared to the best performing state-
of-the-art solutions, our ED-GNN offers an average improvement
of 7.3% in terms of F1 score on five real-world datasets.

CCS CONCEPTS
• Information systems→ Data cleaning; • Theory of compu-
tation → Data integration; • Computing methodologies →
Neural networks.
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1 INTRODUCTION
Recent years have witnessed the rapid growth in medical knowl-
edge bases (KBs), curated from healthcare data, such as clinical
resources, electronic health records, and lab tests. Tremendous
effort has been put into developing automated medical KB con-
struction [10, 46] and completion [30, 44]. Existing systems often
face one major challenge, entity disambiguation (ED): how to map
entity mentions in text snippets from medical source documents to
their corresponding entities in a medical KB.

Text snippets in healthcare data are often collected from het-
erogeneous data sources. Discrepancies arise for many reasons,
including acronyms, abbreviations, typos and colloquial terms. As
a result, text snippets may deviate significantly from the canonical
descriptions of the entities in the KB that they refer to. For example,
an editorial staff member may mention “renal disorder” or “kidney
disease” in a text snippet, with the intention to refer to the entity
that is defined as “nephrosis” in the KB. Similarly, “cah” in a text
snippet may refer to the entity defined as “chronic active hepatitis”.
Such discrepancies make it difficult to link textual entity mentions
to the intended entities in a KB, introducing noise, duplicates, and
ambiguity, eventually decreasing the value of the KB.

While early works often relied on rule-based [16, 21, 39] and
dictionary-based approaches [35, 40], more recent state-of-the-art
ED solutions rely on machine learning methods. In particular, deep
learning (DL) methods [7, 14, 37, 46] are commonly used due to
their powerful feature abstraction and generalization capabilities. A
recent study [29] of various DL-based methods for entity matching,
concluded that they significantly outperform other solutions (e.g.,
[14]) for textual entity matching. However, existing DL methods
either resolve mentions only relying on textual context informa-
tion from the surrounding words [5, 7, 46], or merely use entity
embeddings for feature extraction and rely on other modules for
ED [7, 37, 38]. They do not fully exploit the structural information
in text snippets and KBs.

Recently, graph representation learning has emerged as an effec-
tive approach to learn vector representations for graph-structured
data. Graph Neural Networks (GNNs) [15, 19, 45] have shown
promising results in various representation learning tasks on KBs,
including link prediction, node classification, as well as node clus-
tering. The foundation of GNNs is a powerful spatial invariant
aggregation function that learns how to aggregate rich structural
and semantic information from each node’s neighborhood to gen-
erate node embeddings. Motivated by the observation that entity
mentions in a text snippet are likely to share similar or relevant con-
text, we represent these entity mentions as a query graph to capture
their interdependence. Then, we model ED as a graph matching
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problem and propose a simple architecture, ED-GNN, which not
only collectively learns the contextual information and structural
interdependence of entity mentions in the given text snippets, but
also captures discriminative contextual information of entities in a
medical KB. We target the medical domain because medical KBs
contain deep and fine-grained knowledge, which is reflected by
their rich hierarchical structure and vocabularies that can be uti-
lized by our ED-GNN. Note that ED-GNN could be applied to other
domain-specific or cross-domain KBs as well, if they contain similar
contextual or structural characteristics as the medical ones.

We propose two optimizations for ED-GNN to further improve
its disambiguation capability. First, after constructing a query graph
(representing the entity mentions in a text snippet), ED-GNN aug-
ments this graph with domain knowledge from the medical KB.
Consider the text snippet “Aspirin can cause nausea indicating a po-
tential ARF, nephrotoxicity, and proteinuria”. The abbreviation “ARF”
is a mention that could refer to the entities “acute renal failure” or
“acute respiratory failure” in the medical KB. Leveraging the domain
knowledge from the medical KB (i.e., that “nephrotoxicity” and “pro-
teinuria” are adverse effects of Aspirin), ED-GNN understands that
“ARF” is in the context of Aspirin’s adverse effects. Hence, “acute
renal failure” is identified as the matching entity, even though the
abbreviation of “acute respiratory failure” is also “ARF”.

Second, ED-GNN is equippedwith an effective negative sampling
strategy, which challenges ED-GNN to learn from difficult samples
to improve the model’s disambiguation capability. Assume that we
have picked up (“ARF”, “acute renal failure” ) as a positive training
example. Following convention [52], we sample negative examples
by replacing “acute renal failure” from the above positive example.
Then (“ARF”, “chronic renal failure” ) is a difficult negative sample as
the lexical similarity between “chronic renal failure” and “acute renal
failure” is high. ED-GNN can more effectively learn from the above
negative samples to reach the desired accuracy, compared to the
commonly used random negative sampling [19] that replaces “acute
renal failure” with a random entity (e.g., “fever” ) in the medical KB.

Contributions.We highlight our main contributions as follows:

• Wepresent ED-GNN, a novel medical ED solution, based on graph
neural networks (GNNs) such as GraphSAGE [15], R-GCN [36],
and MAGNN [11]. We model ED as a graph matching problem
to leverage such GNNs with a simple architecture.
• We develop two optimization techniques to further improve ED-
GNN’s disambiguation capability. First, we construct the query
graph and augment it with domain knowledge from the medical
KB. This helps ED-GNN focus on the right structural information
from the query graph for making the matching decisions. Second,
we design an effective negative sampling strategy, which provides
ED-GNN with harder examples, resulting in more discriminative
power for entity disambiguation.
• We evaluate the effectiveness of ED-GNN on multiple real-world
datasets. Our experimental results show that ED-GNN consis-
tently outperforms the state-of-the-art ED solutions in all datasets
by up to 16.4% in F1 score. Furthermore, we evaluate the two
optimization techniques in ED-GNN and show that both of them
lead to performance improvements.

Outline. The rest of the paper is organized as follows. Section 2
introduces the basic notation, briefly describes a family of GNNs,

and overviews the architecture of ED-GNN. Section 3 describes the
two optimization techniques designed for ED-GNN. We present
our experiments in Section 4, review related work in Section 5, and
conclude in Section 6.

2 BACKGROUND AND ARCHITECTURE
Definition 2.1. (Heterogeneous Graph) We define a heteroge-

neous graph as a graph G = (V , E) associated with a node type
mapping function 𝜙 :V ↦→ T and an edge type mapping function
𝜓 : E ↦→ R, where T and R denote the sets of node types and edge
types, respectively, with |T | + |R | > 2.

Figure 1 shows a toy example of a heterogeneous graph con-
structed from a medical KB. The node types are Drug (blue nodes),
AdverseEffect (green nodes), Symptom (purple nodes), and Finding
(orange nodes). The edge types are TREAT, CAUSE, INDICATE,
as well as HAS. Besides, all these nodes are associated with de-
scriptions (e.g., Aspirin, headache, nausea, and fever). In this work,
we model both a medical KB and a text snippet as heterogeneous
graphs, such that we cast medical ED as a binary classification
problem using the expressive power of heterogeneous GNNs.

Figure 1: A toy heterogeneous graph (best viewed in color).

Definition 2.2. (Heterogeneous Graph Embedding) Given a het-
erogeneous graph G = (V , E), with node attribute matrices 𝐴𝑇𝑖 ∈
R |V𝑇𝑖 |×𝑑𝑇𝑖 for node types 𝑇𝑖 ∈ T , a heterogeneous graph embed-
ding is a 𝑑-dimensional node representation (a.k.a. embedding) for
all 𝑣 ∈ V with 𝑑 ≪ |V|, which captures the network structural
and semantic information in G.

Table 1: Table of notations.
Notation Description
G Heterogeneous graph
Gref Knowledge base (reference graph)
Vref The set of nodes in Gref
Eref The set of edges in Gref
𝑣𝑟 A node in Vref
Gqry Query graph
Vqry The set of nodes in Gqry
Eqry The set of edges in Gqry
𝑣𝑞 A node in Vqry
hattr𝑣 Initial node feature
h𝑣 Hidden state (embedding) of node 𝑣
𝑃 A metapath
P The set of metapaths {𝑃1, 𝑃2,· · · , 𝑃𝑀 }

𝑃 (𝑢, 𝑣) A metapath instance connecting nodes 𝑢 and 𝑣

N𝑣 The set of neighbors of node 𝑣
N𝑃

𝑣 The set of neighbors of node 𝑣 based on 𝑃



2.1 Graph Neural Networks
In recent years, Graph Neural Networks (GNNs) have been inten-
sively studied and shown effective for various graph mining and
analytical tasks, including node classification, link predication, and
graphmatching. Their ability to combine structural information and
semantic features is essential to our ED task. In ED-GNN, we em-
ploy three representative approaches, including GraphSAGE [15],
R-GCN [36] and MAGNN [11]. GraphSAGE is a seminal message-
passing GNN, which employs the general notion of aggregator
functions for efficient generation of node embeddings. R-GCN is a
relation-aware graph convolutional network which handles 𝑘-hop
message-passing over heterogeneous KBs. MAGNN is the state-of-
the-art metapath-based GNN that supports heterogeneous KBs and
learns subtle contextual structures in KBs using semantic-aware
neighbor aggregation with composite relations. All three GNNs are
implemented using Deep Graph Library [42] on top of PyTorch [32].
This makes ED-GNN lightweight and easy to adapt to new KBs.
Note that other GNNs can be plugged into our architecture as well.
Table 1 summarizes the notations used in these three GNNs.

GraphSAGE. GraphSAGE [15] leverages node features (e.g.,
text descriptions/labels associated with nodes) in order to learn
an embedding function that generalizes to unseen nodes. By in-
corporating node features, GraphSAGE simultaneously learns the
topological structure of each node’s neighborhood as well as the
distribution of node features in the neighborhood. Formally, the
𝑘-th layer of GraphSAGE is:

h𝑘N𝑣
= AGGREGATE(h𝑘−1𝑢 ,∀𝑢 ∈ N𝑣),

h𝑘𝑣 = 𝜎 (W𝑘 · [h𝑘−1𝑣 | |h𝑘N𝑣
]),

(1)

where 𝜎 is an activation function andW𝑘 is a set of weight matrices,
∀𝑘 ∈ {1, ..., 𝐾}, which are used to propagate information between
different layers of the model. The intuition behind Equation 1 is
that at each layer, nodes aggregate information from their local
neighbors, and as this process iterates, nodes incrementally gain
more and more information from further reaches of the graph.

R-GCN. Unlike GraphSAGE that only considers the node-wise
connectivity in a graph and ignores edge labels such as the rela-
tions in KBs, R-GCN distinguishes different neighbors with relation-
specific weight matrices. In the 𝑘-th convolutional layer, each rep-
resentation vector is updated by accumulating the vectors of neigh-
boring nodes through a normalized sum:

h(𝑘)𝑣 = 𝜎 (W𝑘
0h

𝑘−1
𝑣 +

∑
𝑟 ∈R

∑
𝑢∈N𝑟

𝑣

1
𝑐𝑣,𝑟

W𝑘
𝑟 h

𝑘−1
𝑢 ), (2)

where W𝑘
0 is the weight matrix for the node itself, W𝑘

𝑟 is used
specifically for the neighbors having relation 𝑟 , i.e., N𝑟

𝑣 , R is the
relation set, and 𝑐𝑣,𝑟 is used for normalization. Intuitively, different
edge types use different weights and only edges of the same relation
type 𝑟 are associated with the same projection weightW𝑘

𝑟 .
MAGNN. MAGNN aggregates a node 𝑣 ’s representation from

NP𝑣 (i.e., the metapath-aware neighborhood) and the nodes in be-
tween, by encoding the metapath instances through a relational
rotation encoder. To elaborate, we introduce the following defini-
tions from [11].

Definition 2.3. (Metapath) A metapath 𝑃 in a heterogeneous
graph G is a path in the form of 𝐴1

𝑅1→ 𝐴2
𝑅2→ · · · 𝑅𝑚→ 𝐴𝑚+1 (abbre-

viated as 𝐴1𝐴2· · ·𝐴𝑚+1), where 𝐴 and 𝑅 are node types and edge
types in G, respectively.

Definition 2.4. (Metapath-based Neighbors) Given a metapath 𝑃
of a heterogeneous graph, the metapath-based neighbors N𝑃

𝑣 of a
node 𝑣 are defined as the set of nodes that connect with node 𝑣 via
metapath instances of 𝑃 .

For example, Drug-AdverseEffect-Finding (DAF) is a metapath
representing that drugs cause adverse effects, and these adverse ef-
fects can be described by findings. Given the metapath DAF, “Fever”
and “Diarrhea” constitute the metapath-based neighbors of “Met-
formin” in Figure 1. These nodes are connected with “Metformin”
via the metapath instance “Metformin-Diarrhea-Fever”1.

As defined in [11], during the intra-metapath aggregation, each
target node extracts and combines information from the metapath
instances connecting the node with its metapath-based neighbors.
The intra-metapath aggregation layer is formally defined as:

𝑒𝑃𝑣𝑢 = LeakyReLU(𝑎⊺
𝑃
· [h𝑣 | |h𝑃 (𝑢,𝑣) ]),

𝛼𝑃𝑣𝑢 =
exp(𝑒𝑃𝑣𝑢 )∑

𝑠∈N𝑃
𝑣
exp(𝑒𝑃𝑣𝑠 )

,

h𝑃𝑣 = 𝜎 (
∑

𝑢∈N𝑃
𝑣

𝛼𝑃𝑣𝑢 · h𝑃 (𝑣,𝑢) ),

(3)

where h𝑃 (𝑢,𝑣) represents all the node features along a metapath
instance, 𝑎𝑃 is the parameterized attention vector for the metapath
𝑃 , and 𝛼𝑃𝑣𝑢 is the normalized importance weight for all 𝑢 ∈ N𝑃

𝑣 .
Finally, the intra-metapath output goes through an activation func-
tion 𝜎 (·). In this way, MAGNN captures the structural and semantic
information of heterogeneous graphs from both neighbor nodes
and the metapaths between the target node and its neighbors.

After aggregating the node and edge information within each
metapath, MAGNN uses an inter-metapath aggregation layer with
the attention mechanism to fuse latent vectors of the node 𝑣 ob-
tained from multiple metapaths into final node embeddings. The
inter-metapath aggregation layer is formally defined as:

𝑒𝑃𝑖 = 𝑞
⊺
𝐴
· 𝑠𝑃𝑖 ,

𝛽𝑃𝑖 =
exp(𝑒𝑃𝑖 )∑

𝑃 ∈P𝐴 exp(𝑒𝑝 )
,

hP𝐴𝑣 =
∑

𝑃 ∈P𝐴
𝛽𝑃 · h𝑃𝑣 ,

(4)

where 𝑠𝑃𝑖 denotes the summarized metapath 𝑃𝑖 ∈ P by averaging
the transformed metapath-specific node vectors for all nodes 𝑣 ∈
V𝐴 , 𝑞𝐴 is the parameterized attention vector for node type 𝐴, 𝛽𝑃𝑖
can be interpreted as the relative importance of the metapath 𝑃𝑖
to nodes of type 𝐴, and hP𝐴𝑣 represents the final node embedding
of 𝑣 , namely a weighted sum of all metapath-specific node vectors
of 𝑣 . By integrating multiple metapaths, MAGNN can learn the
comprehensive semantics ingrained in the heterogeneous graph.

1Note that metapath-based neighbors are not limited to 1-hop neighbors.



2.2 ED-GNN Architecture
We now present an overview of ED-GNN (depicted in Figure 2) for
medical entity disambiguation. The basic idea is to represent both a
medical KB and a given text snippet as heterogeneous graphs Gref
and Gqry , respectively. Following the property graph model [8],
we assume that nodes are associated with literal attributes in both
Gref and Gqry , where nodes and edges have different types. In
Gref , nodes correspond to medical entities and edges correspond
to relationships between those entities. The entity mentions and
extracted relations from the text snippets are represented as nodes
and edges in Gqry . Section 3.1 describes the optimized query graph
modeling in further details.

Medical KBs are often curated and updated from text corpora in
medical literature. The text snippets are collected from these text
corpora as well. Hence, the neighboring structures of Gref and Gqry
are expected to be similar. Inspired by Siamese networks [25], ED-
GNN uses two identical graph neural networks (one of GraphSAGE,
R-GCN, or MAGNN) to generate the graph embeddings that encode
all local structural information centered around the nodes in Gqry
and Gref , respectively. These two GNNs share the same parameters
(i.e., weight matrices) and consume a node list and an edge list from
both Gref and Gqry , respectively. In a node list, each row contains
a node id, its attribute features, and its type. In an edge list, each
row has a source node id (head), a destination node id (tail), and
the edge type. More details can be found in [42].

…

Graph Neural 
Network

v

Knowledge Base (𝒢!"#)

Query 
Graph
(𝒢$!%)

?

…

Text Snippet

shared 
parameters

Matching score

Query
representation

Concept
representation

Matching 
Module

Figure 2: ED-GNN architecture (best viewed in color).

Model Training. ED-GNN learns the representation of each
node (node ‘𝑣 ’ in Figure 2) in Gref based on its k-hop or metapath-
based neighbors and the representation of the query concept (node
‘?’ in Figure 2) in Gqry . Such representation captures not only the
node features, but also the topological structure of each node’s
neighborhood inGref orGqry . Thematchingmodule calculates their
matching score, indicating the likelihood of two nodes matching
each other. The matching module can be a multi-layer perceptron
with one hidden layer, a log-bilinear model, or simply a dot product.
We optimize the model weights by minimizing the following loss
function through negative sampling:

L = −
∑
(𝑢,𝑣) ∈Ω

𝑙𝑜𝑔(𝜎 (h⊤𝑢 h𝑣)) −
∑

(𝑢,𝑣) ∈Ω−
𝑙𝑜𝑔(𝜎 (h⊤𝑢 h𝑣′)), (5)

where 𝜎(·) is the sigmoid function, Ω is the set of observed (posi-
tive) node pairs, and Ω− is the set of negative node pairs sampled
from all unobserved node pairs. In our entity disambiguation sce-
nario, a positive node pair consists of one node representing an
ambiguous entity in the text snippet and one node representing its
corresponding matching node in the medical KB, respectively. By
default, ED-GNN adopts uniform negative sampling by corrupting
one node in the positive node pairs, due to its simplicity and effi-
ciency. An optimized negative sampling strategy is introduced in
Section 3.2. The above loss is the cross entropy of classifying the
positive pair correctly.

3 OPTIMIZATIONS IN ED-GNN
3.1 Semantic Augmentation for Query Graph
Our first optimization allows domain knowledge from the medical
KB to be injected into the query graph Gqry through processing
the text snippet to emphasize critical information for entity disam-
biguation. This processing step includes entity mention extraction
and query graph construction.

Augment Entity Mentions with Node Types from Gref . To
extract entity mentions from an input text snippet, i.e., named entity
recognition (NER), many existing methods are available, including
Stanford CoreNLP [27], AllenNLP [12], and PyText [22]. In this
work, we choose BioBERT [23], a deep learning-based clinical NER
model, fine-tuned on the medical KB. Consider the text snippet
in Figure 3: “Aspirin can cause nausea indicating a potential ARF,
nephrotoxicity, and proteinuria”. In this sentence, we can identify
the following terms as entity mentions of medical entities: “Aspirin”,
“nausea”, “ARF”, “nephrotoxicity” and “proteinuria”.

Aspirin Nausea

ARF

Nephrotoxicity

Proteinuria

cause has

Aspirin can cause nausea indicating a 
potential ARF, nephrotoxicity, or proteinuria. 

Text Snippet

Query Graph (𝒢!"#)

Figure 3: Text snippet to query graph (best viewed in color).
Having entity mentions detected, we try to match them with the

nodes in the medical knowledge base Gref . We exploit an inverted
index of the entities in Gref for the matching. Such inverted index
includes not only the exact matches of these entities, but also syn-
onyms, acronyms, and abbreviations of the entities in Gref . For the
matched entity mentions, we further infer their entity types based
on their corresponding entities in Gref . For example, we identify
“aspirin” as an instance of Drug, “nausea” as an instance of Adverse-
Effect, and “nephrotoxicity” as well as “proteinuria” as instances of
Finding in Gref . These identified entities can help us disambiguate
the remaining entity mentions (e.g., “ARF”), for which a match
is not found. Then, these identified entity mentions are used as
the node set in the query graph Gqry . It is possible that an entity
mention has multiple matches in Gref . In this case, we associate all
entity types of these matches to the entity mention.

AugmentRelationships inGqry .One can create a query graph
by connecting each node pair with an edge (self-loops are also



added in this process) [3, 47]. The resulting query graph can be
considered as an undirected graph that describes the dependencies
between entity mentions. However, such approach fails to utilize
the domain knowledge from the medical knowledge base. Namely,
the constructed query graph does not capture different relation-
ships between a pair of entities, which provide critical contextual
information to entity disambiguation.

To address this issue, we leverage the domain knowledge from
Gref to augment the query graph Gqry . Specifically, we introduce
an edge between a pair of nodes 𝑢𝑞 and 𝑣𝑞 (i.e., entity mentions)
in Gqry , if there exist two nodes 𝑢𝑟 and 𝑣𝑟 in Gref , such that 𝑢𝑞
matches 𝑢𝑟 , 𝑣𝑞 matches 𝑣𝑟 , and there exists an edge between 𝑢𝑟
and 𝑣𝑟 in Gref . The type of the newly added edge can be inferred
from the corresponding edge in Gref as well. To continue the above
example, the nodes “Aspirin” and “nausea” are connected by an edge
of type CAUSE in Gref (shown in Figure 1). Hence the newly added
edge in Gqry is of type CAUSE as well. For those entity mentions
(e.g., “ARF”) that do not have their matches inGref , we rely on entity
types obtained from NER to find the corresponding node type in
Gref and further identify the edges associated with the node type.
Subsequently, we add an edge between the unknown entity and
the existing entities if the corresponding node types are connected
in Gref . This newly added edge in Gqry is also augmented with the
corresponding edge type information from Gref . The overall query
graph augmentation method is presented in Algorithm 1.

Algorithm 1 Query Graph Augmentation
Input: A knowledge graph Gref , a text snippet𝑇
Output: A query graph Gqry (Vqry, Eqry)
1: Gqry ← ∅, EM ← NER(𝑇 ) //get all entity mentions
2: EMmatch ← match(𝐸𝑀 , Gref ) //get matching entity mentions
3: EMunknown ← EM \ EMmatch
4: Vqry .addNode(EMmatch)
5: for each pair of nodes 𝑢𝑞, 𝑣𝑞 ∈ Vqry do
6: 𝑢𝑟 ← EMmatch .getMatch(𝑢𝑞 )
7: 𝑣𝑟 ← EMmatch .getMatch(𝑣𝑞 )
8: if 𝑒 = (𝑢𝑟 ,𝑣𝑟 ) ∈ Eref then
9: Eqry .addEdge(𝑢𝑞, 𝑣𝑞 , 𝑒 .type)
10: for each 𝑒𝑚 ∈ EMunknown do
11: et← 𝑒𝑚.getEntityType()
12: EdgeTypeSet← Gref .getEdgeTypes(et)
13: EntityTypeSet← Gref .getEntity(EdgeTypeSet)
14: Vqry .addNode(em) //add 𝑒𝑚 to Gqry
15: 𝑢𝑞 ← 𝑒𝑚

16: for each 𝑣𝑞 ∈ Vqry & 𝑣𝑞 ≠ 𝑢𝑞 do
17: if 𝑣𝑞 .getEntityType() ∈ EntityTypeSet then
18: edgeType← EdgeTypeSet.get(𝑣𝑞 .getEntityType(), et)
19: Eqry .addEdge(𝑢𝑞 , 𝑣𝑞 , edgeType)
20: return Gqry

3.2 Semantic-Driven Negative Sampling
Negative sampling is used in our loss function (Equation 5) as an
approximation of the normalization factor of edge likelihood [28].
Random negative sampling is commonly adopted in graph repre-
sentation learning [15] due to its simplicity and efficiency. However,
most of the negative samples are trivial cases from which the model
does not gain much discriminative power [52]. Generative adversar-
ial network (GAN), has been introduced in negative sampling [43]

to avoid the problem of vanishing gradient and thus to obtain bet-
ter performance. However, using GAN increases the number of
training parameters and leads to instability and degeneracy [52].

To solve the above issues, for every positive training example,
we provide difficult negative examples for our ED-GNN to learn.
Intuitively, these negative examples are very close to the positive
entity in the embedding space either due to their lexical or structural
features. Hence, we generate them by utilizing two different sources
of similarity evidence, which emphasize on both semantic and
structural relatedness between positive and negative examples.

Semantic Similarity. Difficult negative examples should be
semantically similar to the positive entity in Gref . For example, a
positive node pair is (“MH”, “Malignant hyperpyrexia” ), in which
“MH” is the ambiguous entity mention in Gqry and “Malignant
hyperpyrexia” is the labeled positive entity in Gref . Then, (“MH”,
“Malignant hyperthermia” ) can be considered as a difficult negative
example since the semantic similarity between these two entities is
very high. To find such negative examples, we reuse the initial node
(i.e., entity) embeddings in Gref and compute the cosine similarity
between each positive example and other entities in Gref .

Structural Similarity. Difficult negative examples should also
share many common neighbors with the positive entity in Gref .
Intuitively, two entities are similar if they are related to similar
entities. Different graph similarity metrics are defined, ranging from
graph edit distance (GED) [1], maximum common subgraph [2], to
graph kernels [13]. In this work, we choose the commonly used GED
to compute the structural similarity of two entities in Gref . Only
the local (i.e., 1-hop) neighbors of an entity are used in GED, which
substantially reduces the computational cost. Our choice aligns
well with the observation that 1-hop neighbors provide the most
significant structural information in terms of a node representation.

We integrate the above two measures into the scoring function:
𝑠𝑖𝑚 = 𝑠𝑖𝑚𝑠𝑒 · 𝑠𝑖𝑚𝑠𝑡 , where 𝑠𝑖𝑚𝑠𝑒 is the cosine similarity between
two entity embeddings and 𝑠𝑖𝑚𝑠𝑡 is the normalized GED according
to [33]. The resulting similarity score is in the range of [0, 1]. Before
training, negative examples are generated by ranking entities in
Gref according to their similarity scores with respect to the ambigu-
ous entities in the labeled training set. The top-ranked examples are
randomly sampled. As a result, the hard negative examples are more
similar to the query than random negative examples, thus forcing
the model to learn to disambiguate entities at a finer granularity.
To reduce the computational cost, we only consider the immediate
neighbors of an entity in the positive example as candidates for
negative examples. These negative examples are guaranteed to be
negative, since the KB is a complete graph (no missing nodes/edges)
and only one entity matches the ambiguous mention. This is dif-
ferent from link prediction, where a missing positive link can be
falsely selected as a negative example.

During training, we adopt a curriculum training scheme [49]
where ED-GNN will learn from easy negative examples first, but
then gradually focus on difficult ones. Specifically, no difficult ex-
amples are used in the first epoch of training such that our ED-GNN
can quickly find an area in the parameter space where the loss is
relatively small. We then add difficult negative examples in sub-
sequent epochs, focusing the model to learn how to disambiguate
highly related entities from only slightly related ones.



4 EXPERIMENTAL EVALUATION
4.1 Datasets
We use the following datasets from the medical domain as het-
erogeneous graphs to evaluate the performance of our method.
Each dataset is used as a KB by itself. There is only one mention
to be disambiguated in each text snippet, and the goal is to find
its corresponding entity in the KB. Simple statistics of the KBs
corresponding to these datasets are summarized in Table 2.
• MDX is a medical KB2 that contains information about drugs,
adverse effects, indications, findings, etc. It is manually curated
from medical literature by editorial staff, and the text snippets
are extracted from the literature as well. The ground truth for
MDX is provided by the editorial staff.
• MIMIC-III [17] is a public data set containing 40,000 anonymized
patient health-related records. It includes information such as de-
mographics, laboratory test results, medications, and diagnoses.
• Bio CDR [24] consists of 1,500 PubMed abstracts annotated with
mentions of chemicals, diseases, and relations between them.
• NCBI [9] consists of 700 PubMed3 abstracts annotated with dis-
ease mentions and their corresponding concepts in MeSH4.
• ShARe [31] comprises 433 anonymized clinical notes (400 training
and 133 test), obtained from the MIMIC II5 clinical dataset and
annotated with disorder mentions.
In public datasets, ground truths are provided in the following

form: “Text”: “A common human skin tumour is caused by
activating mutations.”, “Mentions”: [{“mention”: “skin
tumor”,“start_offset”:15, “end_offset”:26, “category”:
“Disease”, “link_id”:“C0037286”}]. In this case, skin tumor is
the ambiguous mention and its corresponding entity in the KB is
neoplasm of the skin, which is represented by the concept unique
identifier C0037286 in the medical ontologies (UMLS, MeSH, etc).

Table 2: Dataset statistics.

Dataset MDX MIMIC-III NCBI ShARe Bio CDR
# Nodes 35,028 22,642 753 1,719 1,082
# Edges 74,621 284,542 1,845 12,731 2,857

Each dataset is split into training (70%), validation (15%), and
testing (15%) sets unless otherwise stated. For NCBI, it is split into
a training set of 500 abstracts, a validation and a test set of 100
abstracts each. For Bio CDR, it comes with a training set of 1000
and a test set of 500 abstracts. We further split its training set into
a training and a validation set of 800 and 200 abstracts. For ED-
GNN variants, we add the same number of negative node pairs
described in Section 3.2 to the validation and testing sets. These
negative samples purposely cover different cases (e.g., abbreviation,
synonym, acronym, and simplification).

4.2 Systems
We evaluate our approach ED-GNN using three different GNNs:
GraphSAGE [15], R-GCN [36], and MAGNN [11]. We also com-
pare ED-GNN with the state-of-the-art methods DeepMatcher [29],
NormCo [46], and NCEL [3], which are briefly described below.
2https://www.ibm.com/products/micromedex-with-watson
3https://pubmed.ncbi.nlm.nih.gov/
4https://meshb.nlm.nih.gov/search
5https://archive.physionet.org/mimic2/

• ED-GNN (GraphSAGE) employs GraphSAGE, designed for homo-
geneous graphs. It models the graph topology through neighbors
aggregation on the node attributes.
• ED-GNN (R-GCN) leverages R-GCN, which handles different rela-
tionships between entities in a KB. It learns multiple convolution
matrices corresponding to different edge types.
• ED-GNN (MAGNN) adopts MAGNN, which learns the represen-
tation of nodes based on their metapath-based neighbors with
attention mechanisms at both node and semantic levels.
• DeepMatcher is a supervised deep learning solution designed for
entity resolution in a tabular setting. In our setting, an input to
DeepMatcher is a tuple containing an ambiguous mention from
a text snippet and an entity in the KB. We train and evaluate
DeepMatcher with positive and negative tuples. Although the
structural information from text snippets and KBs is not avail-
able to DeepMatcher, we choose it as an exemplar RNN method
focusing on matching entities.
• NormCo uses a deep coherence model for disease entity normal-
ization, which considers the semantics of an entity mention and
the topical coherence of the mentions within a text snippet.
• NCEL creates a graph for candidates of mentions and then apply
GCN to improve the disambiguation by directly aggregating
information from linked nodes.
Implementation Details. For the baseline systems (i.e., Deep-

Matcher, NormCo, and NCEL), we use the original hyper-parameter
settings described in their papers, respectively. For all ED-GNN
variations, we employ the Adam [18] optimizer with the learning
rate set to 0.001, the weight decay set to 0.001, and dropout rate
to 0.5. We use the same splits of training, validation, and testing
data sets for all models, and train the GNNs for 100 epochs and
apply early stopping with a patience of 30. For ED-GNN using R-
GCN and MAGNN, we set the dimension of the attention vector to
128. For ED-GNN using MAGNN, we set the number of attention
heads to 2; we set the dimension of the attention vector in metapath
aggregation to 128. For a fair comparison, we set the embedding
dimension to 128 for all the above methods.

4.3 Main Results
We measure the performance of all methods using precision, recall,
and F1, which are typical metrics for the evaluation of the entity
disambiguation task [3, 46]. We report the average measurements
of all methods on the test set for 100 repetitions. Table 3 reports
the results of ED-GNN and other methods on all five datasets. The
major findings are summarized as follows:

• Our ED-GNN variants consistently outperform other solutions
in terms of precision, recall, and F1 on all datasets. The best
performing ED-GNN variant offers an average improvement of
7.3% in terms of F1 score, compared to the other best perform-
ing solutions. Among five datasets, we observe that all models
perform better on NCBI and Bio CDR. The reason is that the
graph complexity and semantic richness of NCBI and Bio CDR
are simpler than the other datasets. The gain is much more sig-
nificant on MDX (15.2%) and ShARe (16.4%) datasets. This fact
manifests the expressive capability of our ED-GNN method to
capture rich graph structures from both text snippets and KBs in
medical entity disambiguation.



Table 3: Results of entity disambiguation on five datasets.

Methods DeepMatcher NormCo NCEL ED-GNN (GraphSAGE) ED-GNN (R-GCN) ED-GNN (MAGNN)
Datasets P R F1 P R F1 P R F1 P R F1 P R F1 P R F1
MDX 0.656 0.700 0.677 0.687 0.634 0.659 0.673 0.659 0.666 0.614 0.900 0.730 0.722 0.867 0.788 0.725 0.967 0.829

MIMIC-III 0.708 0.567 0.630 0.747 0.692 0.718 0.716 0.624 0.667 0.786 0.733 0.759 0.810 0.567 0.667 0.826 0.633 0.717
NCBI 0.783 0.815 0.799 0.863 0.818 0.840 0.816 0.793 0.804 0.924 0.860 0.891 0.912 0.823 0.865 0.915 0.861 0.887
ShARe 0.694 0.639 0.665 0.726 0.623 0.671 0.753 0.631 0.687 0.794 0.829 0.811 0.806 0.833 0.819 0.824 0.875 0.851
Bio CDR 0.837 0.816 0.826 0.866 0.805 0.834 0.857 0.829 0.843 0.853 0.845 0.849 0.896 0.866 0.881 0.864 0.853 0.858

Table 4: Results of two optimization techniques on ED-GNN.

Methods Datasets Basic Query graph augmentation Negative sampling
Precision Recall F1 Precision Recall F1 Precision Recall F1

ED-GNN (GraphSAGE) MIMIC-III 0.747 0.702 0.724 0.747 0.702 0.724 0.786 0.733 0.759
NCBI 0.869 0.821 0.844 0.869 0.821 0.844 0.924 0.856 0.889

ED-GNN (R-GCN) Bio CDR 0.825 0.798 0.811 0.863 0.826 0.844 0.846 0.805 0.825

ED-GNN (MAGNN) MDX 0.671 0.827 0.741 0.694 0.863 0.769 0.713 0.925 0.805
ShARe 0.754 0.824 0.787 0.796 0.868 0.830 0.813 0.842 0.827

• Among all three ED-GNN variants, ED-GNN (MAGNN) achieves
the highest average F1 score on all datasets, despite ED-GNN
(GraphSAGE) and ED-GNN (R-GCN) achieve the best perfor-
mance on MIMIC-III, NCBI, and Bio CDR datasets respectively.
It is worth noting that ED-GNN (MAGNN) offers an average
improvement of 2.1% and 2.4%, in terms of F1 score compared to
ED-GNN (GraphSAGE) and ED-GNN (R-GCN), respectively. The
results show that ED-GNN (MAGNN) captures both semantic
and structural features by aggregating specific type of neigh-
bors in the KBs, improving the performance of medical entity
disambiguation. The other two ED-GNN variants deliver the
best results on NCBI and Bio CDR datasets respectively as the
complexities of these two datasets are less than the other ones.
• Regarding the use of various graph features, DeepMatcher and
NormCo only uses the text attributes of the compared entities,
missing the opportunities to leverage more contextual informa-
tion available in the graphs. NCEL incorporates GCN into its
neural network to utilize only a subset of nodes next to the
entity mentions but does not take edge types into considera-
tion. ED-GNN (GraphSAGE) does not differentiate the contextual
information aggregated via different edge types neither. This
can be problematic when information gathered via certain edge
types are not equally important. ED-GNN (R-GCN) tackles this
issue by introducing an edge-aware aggregation function. ED-
GNN (MAGNN) shows the expressive power provided by the
metapath-based aggregation to explore the rich structural and
semantic information in a KB, which eventually results in the
best all-around performance.

4.4 ED-GNN Model Studies
Optimizations in ED-GNN. To make an ablation study on ED-
GNN, we first evaluate the performance of our basic ED-GNN with-
out two optimization techniques introduced in Section 3, ED-GNN
with semantic augmentation for query graph, and ED-GNN with
semantic-driven negative sampling. For each dataset, we choose the
best performing ED-GNN variant from Table 3. The major findings
are summarized from Table 4.

We observe that the semantic-driven negative sampling improves
the basic ED-GNN (GraphSAGE) by 3.5% and 4.5% in terms of
F1 score on MIMIC-III and NCBI, respectively. The query graph
augmentation does not help at all in this case as GraphSAGE is
not a relation-aware GNN. Similarly, ED-GNN (MAGNN) benefits

more from the semantic-driven negative sampling strategy on MDX
(+6.4%). On the other hand, the query graph augmentation is more
effective on BioCDR and ShARe datasets. Compared to the basic ED-
GNN, the improvements are 3.3% and 4.3%, respectively. The reason
is that the additional semantic information from the augmented
query graph is more representative when the KB is simple.

These observations demonstrate that the query graph augmented
with domain knowledge from the medical KB helps ED-GNN focus
on the right structural information when making the matching
decision. The semantic-driven negative sampling strategy, on the
other hand, provides ED-GNN with harder examples, resulting in
more discriminative power for entity disambiguation. Together, two
optimization techniques improve the ED-GNN’s disambiguation
capability across a variety of medical datasets.

Furthermore, we employ GNN-Explainer [50] to visualize the
important contributions of nodes and edges in KBs when finding
the matching entity for the ambiguous mention. Due to the space
constraint, we show one example using MDX dataset in Figure 4(a).
GNN-Explainer highlights 3 most important (score range [0,1])
edges that contribute the most to matching “squamous cell carci-
noma”with “carcinoma epidermoid” by ED-GNN. These edges carry
critical information from different types of neighboring nodes. This
indicates that our ED-GNN can learn and leverage the most seman-
tically and structurally meaningful information among different
types of entities and relations for entity disambiguation.

Convergence Analysis. We analyze the convergence proper-
ties of ED-GNN, using the best performing ED-GNN variant from
Table 3 for each dataset. The results, as shown in Figure 4(b), demon-
strate that ED-GNN converges fast and achieves robust performance
across all real-world datasets.

Adenosquamous carcinoma

(a) Visualization in MDX (b) Convergence

Figure 4: Model analysis (best viewed in color).

Number of Layers in ED-GNN.We also analyze the results of
ED-GNN with 1 to 4 graph layers on all five datasets. Again, we



choose the best performing ED-GNN variant from Table 3 for each
dataset. In Table 5, we observe that the optimal number of graph
layers is 2 (for NCBI) or 3 (for MDX, MIMI-III, ShARe, and Bio CDR).
When ED-GNN uses more than 3 layers, its performance declines.
Although more layers allow ED-GNN to indirectly capture more
distant neighborhood information by layer-to-layer propagation,
such distant neighbors would introduce much noise and lead to
more non-isomorphic neighborhood structures between the query
graph and the KB.

Table 5: Number of layers (F1).

# layers MDX MIMIC-III NCBI ShARe Bio CDR
1 0.691 0.641 0.815 0.731 0.785
2 0.751 0.704 0.891 0.825 0.843
3 0.829 0.759 0.867 0.851 0.881
4 0.743 0.727 0.831 0.806 0.829

4.5 Error Analysis
We also provide an error analysis on the entity mentions that are
not disambiguated correctly by ED-GNN. Table 6 breaks incorrect
results in three categories below.

Table 6: Error analysis (% of each test set).

Error MDX MIMIC-III NCBI ShARe Bio CDR
Gqry construction 9.5% 8.7% 1% 3.8% 2.2%

Insufficient structure 4.3% 9.8% 6% 3% 5.2%
Highly similar nodes 8% 4.8% 4% 3% 4.4%

Query Graph Construction Error to Gqry . We observed that
the semantic augmentation for query graph does not always lead to
a correct query graph. The reasons are twofold. First, as described
in Section 3.1, an entity mention may be associated with multiple
entity types. For example, “rash” can be an instance of either Find-
ing or AdverseEffect in MDX. Hence, the query graph may carry
ambiguous semantic information that confuses ED-GNN. Second,
multiple entity types can also lead to additional relationships in the
query graph. These relationships could be irrelevant to the actual
text snippet, leading to incorrect matches.

Insufficient Structural Information in Gqry . We observed
that almost 50% of the errors are due to a lack of graph structural
information from text snippets. When a text snippet is short, the
constructed query graph often contains few nodes and edges. For
example, in a text snippet “Graft failure due to FSGS recurrence”
from MIMIC-III, “Graft failure” is the only neighbor entity of “FSGS
recurrence”. In this case, ED-GNN does not have enough structural
information to leverage. Consequently, it fails to discover the cor-
responding entity in the KB’s embedding space.

Highly Similar Nodes in Gref . At times, ED-GNN fails to iden-
tify the correct entity in the KB (e.g., MIMIC-III), even when the
query graph is correctly constructed. In such cases, the entity cor-
responding to the ambiguous mention is often located in a highly
dense area of the KB, where many semantically and structurally
similar candidates exist. ED-GNN is not able to learn all possible
negative examples through the semantic-driven negative sampling.

5 RELATEDWORK
GraphNeural Networks.Graph representation learning has been
shown to be extremely effective, achieving promising results in
various domains over graph-structured data [15, 19, 26, 41, 48].

GCN [19] is a graph convolutional network via a localized first-
order approximation of spectral graph convolutions. The semi-
nal GNN framework, GraphSAGE [15], learns node embeddings
through aggregating from a node’s local neighborhood using induc-
tive learning. Graph attention networks (GAT) [41] are introduced
to learn the importance between nodes and their neighbors, and
fuse the neighbors to perform node classification.

Heterogeneous graph embedding has also received much re-
search attention recently [4, 11, 36, 45], as many KBs also fall
under the general umbrella of heterogeneous graphs. For exam-
ple, R-GCN [36] distinguishes different neighbors with relation-
specific weight matrices. Heterogeneous graph attention network
(HAN) [45] leverages a graph attention network architecture to
aggregate information from the neighbors and then to combine
various metapaths through the attention mechanism. Inspired by
HAN, HetGNN [51] encodes the content of each node into a vector
and then adopts a node type-aware aggregation function to collect
information from the neighbors. HetGNN also uses attention over
the node types of the neighborhood node to get the final embed-
ding. MAGNN [11] captures all neighbor nodes and the metapath
context using both intra-metapath aggregation and inter-metapath
aggregation.

Entity Disambiguation. For many years, entity disambigua-
tion (also referred to as entity linking) has been an active field of
research [38]. A related task, entity matching, has also been stud-
ied extensively in the context of structured data [6, 20]. Recently,
[14, 29] investigated various DL-based methods for entity match-
ing, and concluded that although DL-based techniques do not offer
significant advantages for structured data, they outperform current
solutions [14] considerably for textual entity matching. DoSeR [53]
relies on an RDF KB embedding [34] for KB entities using known
entity links to model the context in which those entities are men-
tioned in the text, which can subsequently be used to predict further
mentions of such entities based on the mention’s context. NCEL [3]
applies graph convolutional network to integrate both local contex-
tual features and global coherence information for entity linking.
COM-AID [7] introduces a composite attentional encode-decode
neural network in healthcare. NormCo [46] is designed for disease
normalization. It models entity mentions using a semantic model,
which consists of an entity phrase model using word embeddings
and a coherence model of other disease mentions using an RNN.
Unlike existing works in the field, we introduce a simple architec-
ture that leverages state-of-the-art GNNs to encode the latent graph
structure of the KB and the input text snippets for medical entity
disambiguation.

6 CONCLUSION
In this paper, we study the entity disambiguation problem in med-
ical knowledge graph curation and maintenance processes. We
present ED-GNN, a medical entity disambiguation system, based
on GNNs. ED-GNN uses a simple architecture to leverage state-of-
the-art GNNs, and is further optimized by augmenting the query
graph with domain knowledge from the medical KB as well as an
effective negative sampling scheme to improve the disambiguation
capability. The experimental results on multiple real-world medical
KBs demonstrate that ED-GNN is effective and outperforms the
state-of-the-art solutions.
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