
Shared Online 
Event Trend Aggregation

Olga Poppe, Chuan Lei, Lei Ma, Allison Rozet, Elke A. Rundensteiner

Best short paper in CIKM 2020
Full paper in SIGMOD 2021



Motivation
What are event trends?

2



Algorithmic Trading

Goal:

Reliable actionable insights 
about the stream

Solution: 
Each event is considered in the 
context of other events in the 
stream

3Picture source: https://cabotwealth.com/daily/stock-market/stock-market-trends-profit-2018/



Single event = 
Single stock value

Event sequence =
Stock down trend of fixed length

Event trend = 
Stock up trend of any length

4

Algorithmic Trading

Picture source: https://cabotwealth.com/daily/stock-market/stock-market-trends-profit-2018/



5

Algorithmic Trading

Single event = 
Single stock value

Event sequence =
Stock down trend of fixed length

Event trend = 
Stock up trend of any length

Picture source: https://cabotwealth.com/daily/stock-market/stock-market-trends-profit-2018/



6

Algorithmic Trading

Single event = 
Single stock value

Event sequence =
Stock down trend of fixed length

Event trend = 
Stock up trend of any length

Picture source: https://cabotwealth.com/daily/stock-market/stock-market-trends-profit-2018/



7

Event Trends
Infection spread

Financial fraud Performance optimization

Ridesharing 

Path of 
infection 
spread

Trajectory
of shared 
ride

Circular 
check kite

Increasing load 
of a system 
component 



8

eExisting 
event trends

Complexity of Event Trend Analytics
Under Skip-Till-Any-Match Semantics [SIGMOD’08]



9

Complexity of Event Trend Analytics
Under Skip-Till-Any-Match Semantics [SIGMOD’08]

e

New 
event trends

e

e

e

Existing 
event trends



10

Event Trend Aggregation Queries

q1: RETURN      T.district, COUNT(*), SUM(T.duration)
PATTERN    Request R, Travel T+, NOT Pickup P
WHERE         [driver, rider] 
GROUP-BY T.district 
WITHIN 30 min SLIDE 1 min

Ridesharing 

Number and duration of trips in which
driver drove to pickup location 
but did not pick up the rider



11

Event Trend Aggregation Queries

q1: RETURN      T.district, COUNT(*), SUM(T.duration)
PATTERN    Request R, Travel T+, NOT Pickup P
WHERE         [driver, rider] 
GROUP-BY T.district 
WITHIN 30 min SLIDE 1 min

Ridesharing 

Number and duration of trips in which
driver drove to pickup location 
but did not pick up the rider



12

Event Trend Aggregation Queries

q1: RETURN      T.district, COUNT(*), SUM(T.duration)
PATTERN    Request R, Travel T+, NOT Pickup P
WHERE         [driver, rider] 
GROUP-BY T.district 
WITHIN 30 min SLIDE 1 min

Ridesharing 

Number and duration of trips in which
driver drove to pickup location 
but did not pick up the rider



13

Event Trend Aggregation Queries

q1: RETURN      T.district, COUNT(*), SUM(T.duration)
PATTERN    Request R, Travel T+, NOT Pickup P
WHERE         [driver, rider] 
GROUP-BY T.district 
WITHIN 30 min SLIDE 1 min

Ridesharing 

Number and duration of trips in which
driver drove to pickup location 
but did not pick up the rider



14

Event Trend Aggregation Queries

q1: RETURN      T.district, COUNT(*), SUM(T.duration)
PATTERN    Request R, Travel T+, NOT Pickup P
WHERE         [driver, rider] 
GROUP-BY T.district 
WITHIN 30 min SLIDE 1 min

Ridesharing 

Number and duration of trips in which
driver drove to pickup location 
but did not pick up the rider



15

Problem Statement

Average query latency of 
all queries is minimal

q1: RETURN      T.district, COUNT(*), SUM(T.duration)
PATTERN    Request R, Travel T+, NOT Pickup P
WHERE         [driver, rider] 
GROUP-BY T.district 
WITHIN 30 min SLIDE 1 min

q2: RETURN       T.district, COUNT(*), AVG(T.speed) 
PATTERN     Request R, Travel T+, Dropoff D
WHERE          [driver, rider] AND R.type=Pool 
GROUP-BY T.district 
WITHIN 30 min SLIDE 5 min

q3: RETURN       T.district, COUNT(*), SUM(T.duration) 
PATTERN     Request R, Travel T+, Cancel C
WHERE          [driver, rider] AND T.speed<10 
GROUP-BY T.district 
WITHIN 20 min SLIDE 1 min 

Event trend aggregation queries High-rate event stream



1. Exponential complexity vs real-time response 

16

Challenges

Online

Event trend aggregation without 
event trend construction reduces 
complexity from exponential to 
quadratic [VLDB’17, SIGMOD’19]

Shared

Event trend aggregation among 
multiple queries requires 
construction of shared sub-trends
to ensure correctness

Þ Correct yet efficient shared online event trend aggregation strategy



1. Exponential complexity vs real-time response 
2. Benefit vs overhead of sharing

17

Challenges

Benefit

Due to avoided re-
computations for similar 
queries in the workload

Overhead

Due to maintenance of 
intermediate results per 
query to ensure correctness 

Þ Light-weight yet accurate sharing benefit model



1. Exponential complexity vs real-time response 
2. Benefit vs overhead of sharing
3. Bursty event streams vs light-weight sharing decisions

18

Challenges

Þ Runtime yet light-weight sharing decisions

Static sharing optimizer

Can do more harm than 
good if event rate and  
data distribution fluctuate 

Dynamic sharing optimizer

Must adjust its decisions to 
the changing cost factors at 
runtime 



19

State-of-the-Art

Approach Kleene closure Online aggregation Sharing decisions

MCEP [SIGMOD’19] ü - static

Sharon [ICDE’18] - ü static

Greta [VLDB’17] ü ü not shared



20

State-of-the-Art

Approach Kleene closure Online aggregation Sharing decisions

MCEP [SIGMOD’19] ü - static

Sharon [ICDE’18] - ü static

Greta [VLDB’17] ü ü not shared

Hamlet [SIGMOD’21] ü ü dynamicdynamically decides to share or not to share online event trend aggregation



21

Hamlet Framework

Static 
Workload 
Analysis 

Sharing Benefit 
Model

Hamlet OptimizerQuery
workload

Event 
stream

Aggregation
results

Split & Merge
of Graphlets

Graph 
Construction

Hamlet Executor

Stream
Partitioning

Sharing Benefit 
Monitoring

Decision to 
Split & Merge 

Graphlets

Choice of 
Query Set

Sharing 
benefit

Runtime 
configuration



22

Sharable Queries

q1: RETURN      T.district, COUNT(*), SUM(T.duration)
PATTERN    Request R, Travel T+, Pickup P
WHERE         [driver, rider] 
GROUP-BY T.district 
WITHIN 30 min SLIDE 1 min

q2: RETURN       T.district, COUNT(*), AVG(T.speed) 
PATTERN     Request R, Travel T+, Dropoff D
WHERE          [driver, rider] AND R.type=Pool 
GROUP-BY T.district 
WITHIN 30 min SLIDE 5 min

q3: RETURN       T.district, COUNT(*), SUM(T.duration) 
PATTERN     Request R, Travel T+, Cancel C
WHERE          [driver, rider] AND T.speed<10 
GROUP-BY T.district 
WITHIN 20 min SLIDE 1 min 

Queries are sharable if their 
○ Patterns contain at least one sharable 
Kleene sub-pattern, 



23

Sharable Queries

q1: RETURN      T.district, COUNT(*), SUM(T.duration)
PATTERN    Request R, Travel T+, Pickup P
WHERE         [driver, rider] 
GROUP-BY T.district 
WITHIN 30 min SLIDE 1 min

q2: RETURN       T.district, COUNT(*), AVG(T.speed) 
PATTERN     Request R, Travel T+, Dropoff D
WHERE          [driver, rider] AND R.type=Pool 
GROUP-BY T.district 
WITHIN 30 min SLIDE 5 min

q3: RETURN       T.district, COUNT(*), SUM(T.duration)
PATTERN     Request R, Travel T+, Cancel C
WHERE          [driver, rider] AND T.speed<10 
GROUP-BY T.district 
WITHIN 20 min SLIDE 1 min 

Queries are sharable if their 
○ Patterns contain at least one sharable 
Kleene sub-pattern, 
○ Aggregation functions can be shared,



24

Sharable Queries

q1: RETURN      T.district, COUNT(*), SUM(T.duration)
PATTERN    Request R, Travel T+, Pickup P
WHERE         [driver, rider] 
GROUP-BY T.district 
WITHIN 30 min SLIDE 1 min

q2: RETURN       T.district, COUNT(*), AVG(T.speed) 
PATTERN     Request R, Travel T+, Dropoff D
WHERE          [driver, rider] AND R.type=Pool 
GROUP-BY T.district 
WITHIN 30 min SLIDE 5 min

q3: RETURN       T.district, COUNT(*), SUM(T.duration) 
PATTERN     Request R, Travel T+, Cancel C
WHERE          [driver, rider] AND T.speed<10 
GROUP-BY T.district 
WITHIN 20 min SLIDE 1 min 

Queries are sharable if their 
○ Patterns contain at least one sharable 
Kleene sub-pattern, 
○ Aggregation functions can be shared,
○ Windows overlap, and



25

Sharable Queries

Queries are sharable if their 
○ Patterns contain at least one sharable 
Kleene sub-pattern, 
○ Aggregation functions can be shared,
○ Windows overlap, and
○ Grouping attributes are the same.

q1: RETURN      T.district, COUNT(*), SUM(T.duration)
PATTERN    Request R, Travel T+, Pickup P
WHERE         [driver, rider] 
GROUP-BY T.district 
WITHIN 30 min SLIDE 1 min

q2: RETURN       T.district, COUNT(*), AVG(T.speed) 
PATTERN     Request R, Travel T+, Dropoff D
WHERE          [driver, rider] AND R.type=Pool 
GROUP-BY T.district 
WITHIN 30 min SLIDE 5 min

q3: RETURN       T.district, COUNT(*), SUM(T.duration) 
PATTERN     Request R, Travel T+, Cancel C
WHERE          [driver, rider] AND T.speed<10 
GROUP-BY T.district 
WITHIN 20 min SLIDE 1 min 



26

Hamlet Template

Travel

q1

q1, q2

q2

q1: RETURN      T.district, COUNT(*), SUM(T.duration)
PATTERN     Request R, Travel T+
WHERE         [driver, rider] 
GROUP-BY T.district 
WITHIN 10 min SLIDE 5 min

q2: RETURN       T.district, COUNT(*), AVG(T.speed) 
PATTERN     Pickup P, Travel T+
WHERE          [driver, rider] AND P.type=Pool 
GROUP-BY T.district 
WITHIN 15 min SLIDE 5 min

PickupRequest



27

Hamlet Framework

Static 
Workload 
Analysis 

Sharing Benefit 
Model

Hamlet OptimizerQuery
workload

Event 
stream

Aggregation
results

Split & Merge
of Graphlets

Graph 
Construction

Hamlet Executor

Stream
Partitioning

Sharing Benefit 
Monitoring

Decision to 
Split & Merge 

Graphlets

Choice of 
Query Set

Sharing 
benefit

Runtime 
configuration



28

Non-Shared Graph Construction

t3

time

Request

Travel

type
r1 r2

2 event trends:
r1,t3
r2,t3

Event of type Request
Event of type Travel

q1



29

Non-Shared Graph Construction

t3

time

type
r1 r2

2 event trends:
r1,t3
r2,t3

Event of type Request
Event of type TravelRequest

Travel

q1



30

Non-Shared Graph Construction

t3

11

time

type
r1 r2

2 event trends:
r1,t3
r2,t3

Event of type Request
Event of type TravelRequest

Travel

q1



31

Non-Shared Graph Construction

t3 2

11

time

type
r1 r2

2 event trends:
r1,t3
r2,t3

Event of type Request
Event of type TravelRequest

Travel

q1



32

Non-Shared Graph Construction

t3 2 4

11

type
r1 r2

t4

6 event trends:
r1,t3
r1,t4
r1,t3,t4 
r2,t3
r2,t4
r2,t3,t4 

time

𝑁𝑜𝑛𝑆ℎ𝑎𝑟𝑒𝑑 𝑄 = 𝑂(𝑛!)

where 𝑛 – # events in a window

Event of type Request
Event of type TravelRequest

Travel

q1



33

Non-Shared Graph Construction

t3

type
r1 r2

t4

p1

t3 t4

𝑁𝑜𝑛𝑆ℎ𝑎𝑟𝑒𝑑 𝑄 = 𝑂(𝑛! ∗ 𝑘)

where 𝑛 – # events in a window,
𝑘 – # queries

time

Event of type Request
Event of type Travel
Event of type Pickup

Request

Travel

q1

Pickup

Travel

q2



34

Non-Shared Graph Construction

t3

type
r1 r2

t4

p1

t3 t4

𝑁𝑜𝑛𝑆ℎ𝑎𝑟𝑒𝑑 𝑄 = 𝑂(𝑛! ∗ 𝑘) = 142 ∗ 2 = 392

where 𝑛 – # events in a window,
𝑘 – # queries

time

Event of type Request
Event of type Travel
Event of type Pickup

Request

Travel

q1

Pickup

Travel

q2



35

Shared Graph Construction

Event of type Request
Event of type Travel
Event of type Pickup
Snapshot
Shared graphlet
Non-shared graphlet



36

Shared Graph Construction

q1

q2

The set of predecessor events is different for q1 and q2 due to:
• Different patterns

Event of type Request
Event of type Travel
Event of type Pickup
Snapshot
Shared graphlet
Non-shared graphlet



37

Shared Graph Construction

q1,q2

q1

The set of predecessor events is different for q1 and q2 due to:
• Different patterns
• Predicates 

Event of type Request
Event of type Travel
Event of type Pickup
Snapshot
Shared graphlet
Non-shared graphlet



38

Shared Graph Construction

x

y

Snapshot q1 q2

x 2 1

y 8 4

Event of type Request
Event of type Travel
Event of type Pickup
Snapshot
Shared graphlet
Non-shared graphlet



39

Shared Graph Construction

x

y

Event of type Request
Event of type Travel
Event of type Pickup
Snapshot
Shared graphlet
Non-shared graphlet

𝑔 – # events per graphlet,
𝑡 – # types per query 

𝑆ℎ𝑎𝑟𝑒𝑑(𝑄) = 𝑂(𝑛! ∗ 𝑠 + 𝑠 ∗ 𝑘 ∗ 𝑔 ∗ 𝑡)

where 𝑛 – # events in a window,
𝑘 – # queries,
𝑠 – # snapshots, 



40

Shared Graph Construction

x

y

Event of type Request
Event of type Travel
Event of type Pickup
Snapshot
Shared graphlet
Non-shared graphlet

𝑔 – # events per graphlet,
𝑡 – # types per query 

𝑆ℎ𝑎𝑟𝑒𝑑 𝑄 = 𝑂 𝑛! ∗ 𝑠 + 𝑠 ∗ 𝑘 ∗ 𝑔 ∗ 𝑡 = 142 ∗ 2 + 2 ∗ 2 ∗ 4 ∗ 2 = 424

where 𝑛 – # events in a window,
𝑘 – # queries,
𝑠 – # snapshots, 

𝑁𝑜𝑛𝑆ℎ𝑎𝑟𝑒𝑑 𝑄 = 𝑂(𝑛! ∗ 𝑘) = 142 ∗ 2 = 392>



41

Hamlet Framework

Static 
Workload 
Analysis 

Sharing Benefit 
Model

Hamlet OptimizerQuery
workload

Event 
stream

Aggregation
results

Split & Merge
of Graphlets

Graph 
Construction

Hamlet Executor

Stream
Partitioning

Sharing Benefit 
Monitoring

Decision to 
Split & Merge 

Graphlets

Choice of 
Query Set

Sharing 
benefit

Runtime 
configuration



42

Dynamic Sharing Decision

R1

P2

T3

T4

T3

R1

P2

x

Shared execution Non-shared execution

𝑆ℎ𝑎𝑟𝑒𝑑 𝑇3, 𝑄! = 4 ∗ 7 ∗ 1 + 1 ∗ 2 ∗ 4 ∗ 2 = 44 𝑁𝑜𝑛𝑆ℎ𝑎𝑟𝑒𝑑 𝑇3, 𝑇4 , 𝑄𝑇 = 2 ∗ 4 ∗ 7 = 56

A burst is a set of consecutive events of type 𝑇, the processing of which 
can be shared by queries 𝑄𝑇 that contain a Kleene sub-pattern 𝑇+.
|Single event| ≤ |Burst| ≤ |Window|



43

Dynamic Sharing Decision
Shared execution

R1

P2

T3

x



44

Dynamic Sharing Decision
Shared execution Non-shared execution

𝑆ℎ𝑎𝑟𝑒𝑑 𝑇3, 𝑄! = 4 ∗ 11 ∗ 2 + 1 ∗ 2 ∗ 8 ∗ 2 = 120 𝑁𝑜𝑛𝑆ℎ𝑎𝑟𝑒𝑑 𝑇4, 𝑇5 , 𝑄! = 2 ∗ 4 ∗ 11 = 88

T4

T5

y
R1

P2

T3

x

R1

P2

T3

x



45

Dynamic Sharing Decision
Non-shared execution

T4

T5

R1

P2

T3
x



46

Dynamic Sharing Decision
Non-shared execution

𝑁𝑜𝑛𝑆ℎ𝑎𝑟𝑒𝑑 𝑇4, 𝑇5 , 𝑄! = 2 ∗ 4 ∗ 15 = 120

T4

T5

R1

P2

T3
x

𝑆ℎ𝑎𝑟𝑒𝑑 𝑇6, 𝑄! = 4 ∗ 15 ∗ 1 + 1 ∗ 2 ∗ 4 ∗ 2 = 76

T6

z

T4

T5

R1

P2

T3
x

Shared execution

Split comes for free!Merge creates one snapshot
Linear in # events per graphlet 



Experiments

47



48

Experimental Setup
Infrastructure
Java 8, Ubuntu 14.04, 16 cores, 128GB

Data sets
○ NYC taxi and Uber real data set
○ Smart home real data set
○ Stock real data set
○ Ridesharing data set

Metrics
○ Latency
○ Throughput
○ Peak memory

Cost factors
○ Number of events per minute
○ Number of queries

Approach Kleene 
closure

Online 
aggregation

Sharing 
decisions

MCEP 
[SIGMOD’19] ü - static

Sharon 
[ICDE’18] - ü static

Greta 
[VLDB’17] ü ü

not 
shared

Hamlet 
[SIGMOD’21] ü ü dynamic



49

Hamlet vs State-of-the-Art

○ Hamlet outperforms Sharon by 3-5 orders of magnitude, Greta by 1-2 orders of
magnitude, and MCEP by 7-76X

○ Hamlet terminates within 25 ms, Sharon – 50 min, Greta – 3 sec, MCEP – 1 sec

Ridesharing data set Ridesharing data set



50

Dynamic vs Static Sharing Decisions

Static optimizer
Shared execution during the entire window
Þ Number of snapshots is 10K-20K
Þ Sharing overhead

Dynamic optimizer
10% of bursts is not shared 
Þ Number of snapshots is reduced by 50% (4K-8K)
Þ 21-34% speed-up compared to static optimizer

Overhead: 
400-600 sharing decisions per window within 20ms
0.2% of total latency per window

Stock real data 
120 events per shared burst of event on avg

Number of graphlets is 400-600
Number of shared graphlets is 360-500



51

Conclusions

Hamlet integrates:

○ Shared online trend aggregation strategy

○Dynamic sharing optimizer 

○Makes fine-grained sharing decisions per each

○ Sharable Kleene sub-pattern,
○Burst of events, and 
○ Subset of queries.

○ Switches between shared and non-shared execution at runtime

Hamlet achieves substantial performance gains compared to state-of-the-art



52

Chuan Lei
Researcher 

Lei Ma
PhD student

Allison Rozet
SWE

Elke A. Rundensteiner
Professor

Acknowledgements

Funding agencies:
○NSF grants IIS-1815866, IIS-1018443, CRI-1305258 
○U.S. Department of Education grant P200A150306
○U.S. Department of Agriculture grant 1023720



Thanks!
Questions? 

53


