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ABSTRACT

Complex event processing (CEP) systems continuously evaluate
large workloads of pattern queries under tight time constraints.
Event trend aggregation queries with Kleene patterns are com-
monly used to retrieve summarized insights about the recent trends
in event streams. State-of-art methods are limited either due to
repetitive computations or unnecessary trend construction. Exist-
ing shared approaches are guided by statically selected and hence
rigid sharing plans that are often sub-optimal under stream fluc-
tuations. In this work, we propose a novel framework Hamlet
that is the first to overcome these limitations. Hamlet introduces
two key innovations. First, Hamlet adaptively decides at run time
whether to share or not to share computations depending on the
current stream properties to harvest the maximum sharing benefit.
Second, Hamlet is equipped with a highly efficient shared trend
aggregation strategy that avoids trend construction. Our experi-
mental study on both real and synthetic data sets demonstrates that
Hamlet consistently reduces query latency by up to five orders of
magnitude compared to state-of-the-art approaches.
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1 INTRODUCTION

Sensor networks, web applications, and smart devices produce high
velocity event streams. Industries use Complex Event Processing
(CEP) technologies to extract insights from these streams using
Kleene queries [9, 15, 46], i.e., queries with Kleene plus “+” operator
that matches event sequences of any length, a.k.a. event trends [32].
Since there can be a large number of arbitrarily long trends, these
trends are typically aggregated to derive summarized insights [37].
CEP systems must process large workloads of such event trend
aggregation queries over high-velocity streams in near real-time.

Figure 1: Event trend aggregation queries

Example 1.1. Complex event trend aggregation queries are used
in Uber and DoorDash for price computation, forecasting, schedul-
ing, and routing [30]. With hundreds of users per district, thousands
of transactions, and millions of districts nationwide, real-time event
analytics has become a challenging task.

In Figure 1, the query workload computes various trip statistics
such as the number, total duration, and average speed of trips per
district. Each event in the stream is of a particular event type, e.g.,
Request, Pickup, Dropoff. Each event is associated with attributes
such as a time stamp, district, speed, driver, and rider identifiers.

Query 𝑞1 focuses on trips in which the driver drove to a pickup
location but did not pickup a rider within 30 minutes since the
request. Each trip matched by 𝑞1 corresponds to a sequence of
one ride Request event, followed by one or more Travel events
(expressed by the Kleene plus operator “+”), and not followed by
a Pickup event. All events in a trip must have the same driver and
rider identifiers as required by the predicate [driver, rider]. Query
𝑞2 targets Pool riders who were dropped off at their destination.
Query 𝑞3 tracks riders who cancel their accepted requests while the
drivers were stuck in slow-moving traffic. All three queries contain
the expensive Kleene sub-pattern 𝑇+ that matches arbitrarily long
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event trends. Thus, one may conclude that sharing𝑇+ always leads
to computational savings. However, a closer look reveals that the
actual sharing benefit depends on the current stream characteristics.
Indeed, trips are affected by many factors, from time and location
to specific incidents, as the event stream fluctuates.

Challenges. To enable shared execution of trend aggregation
queries, we must tackle the following open challenges.

Exponential complexity versus real-time response. Construction
of event trends matched by a Kleene query has exponential time
complexity in the number of matched events [32, 46]. To achieve
real-time responsiveness, shared execution of trend aggregation
queries should thus adopt online strategies that compute trend
aggregates on-the-fly while avoiding this expensive trend construc-
tion [34, 35]. However, shared execution applied to such online
trend aggregation incurs additional challenges not encountered by
the shared processing of traditional queries [22]. In particular, we
must avoid constructing these trends, while capturing connections
among shared sub-trends to validate predicates of each query. For
example, query 𝑞1 in Figure 1 may match all events of type Travel,
while queries 𝑞2 and 𝑞3 may only match some of them due to their
predicates. Consequently, different trends will be matched by these
queries. On first sight it appears that result validation requires the
construction of all trends per query, which would defeat the goal
of online aggregation. To address this dilemma, we must develop a
correct yet efficient shared online trend aggregation strategy.

Benefit versus overhead of sharing. One may assume that the more
sub-patterns are shared, the greater the performance improvement
will be. However, this assumption does not always hold due to the
overhead caused by maintaining intermediate aggregates to ensure
correctness of final results. The computational overhead incurred
by shared execution does not always justify the savings achievable
compared to baseline non-shared execution. For example, sharing
query𝑞1 with the other two queries in Figure 1 will not be beneficial
if there are only few Pool requests and the travel speed is above 10
mph. Hence, we need to devise a lightweight benefit model that
accurately estimates the benefit of shared execution of multiple
trend aggregation at runtime.

Bursty event streams versus light-weight sharing decisions. The
actual sharing benefit can vary over time due to the nature of bursty
event streams. Even with an efficient shared execution strategy and
an accurate sharing benefit model, a static sharing solution may
not always lead to computational savings. Worse yet, in some cases,
a static sharing decision may do more harm than good. Due to
different predicates and windows of queries in Figure 1, one may
decide at compile time that these queries should not be shared.
However, a large burst of Pool requests may arrive and the traf-
fic may be moving slowly in rush hour, making sharing of these
queries beneficial. For this, a dynamic sharing optimizer, capable
of adapting to changing arrival rates, data distribution, and other
cost factors, must be designed. Its runtime sharing decisions must
be light-weight to ensure real-time responsiveness.

State-of-the-Art Approaches. While there are approaches to
shared execution of multiple Kleene queries [19, 22], they first con-
struct all trends and then aggregate them. Even if trend construction
is shared, its exponential complexity is not avoided [32, 46]. Thus,
even the most recent approach, MCEP [22] is 76–fold slower than
Hamlet as the number of events scales to 20K events per minute

(Figure 8(a)). Recent work on event trend processing [34–36] ad-
dresses this performance bottleneck by pushing the aggregation
computation into the pattern matching process. Such online meth-
ods manage to skip the trend construction step and thus reduce
time complexity of trend aggregation from exponential to quadratic
in the number of matched events. Among these online approaches,
Greta [34] is the only approach that supports Kleene closure. Un-
fortunately, Greta neglects sharing opportunities in the workload
and instead processes each query independently from others. On
the other hand, Sharon [36] enables shared execution but does
not support Kleene. Thus, it is restricted to fixed-length event se-
quences. Further, its sharing decisions are static and thus miss
runtime sharing opportunities. Our experiments confirm that these
approaches fail to cope with high velocity streams with 40K events
per minute (Figure 10(b)). Table 1 summarizes these approaches.

Approach

Kleene Online Sharing

closure aggregation decisions

MCEP [22] ✓ − static
Sharon [36] − ✓ static
Greta [34] ✓ ✓ not shared
Hamlet (ours) ✓ ✓ dynamic

Table 1: Approaches to event trend aggregation

Proposed Solution. Our Hamlet approach supports online ag-
gregation over Kleene closure while dynamically deciding which
subset of sub-patterns should be shared by which trend aggregation
queries and for how long depending on the current characteristics
of the event stream. The Hamlet optimizer leverages these stream
characteristics to estimate the runtime sharing benefit and instructs
the Hamlet executor to switch between shared and non-shared
execution strategies. Such fine-grained decisions allow Hamlet to
maximize the sharing benefit at runtime. The Hamlet runtime ex-
ecutor propagates shared trend aggregates from previouslymatched
events to newly matched events in an online fashion, i.e., without
constructing event trends.

Contributions. Hamlet offers the following key innovations.
1. We present a novel framework Hamlet for optimizing a work-

load of queries computing aggregation over Kleene pattern matches,
called event trends. To the best of our knowledge, Hamlet is the
first to seamlessly integrate the power of online event trend aggre-
gation and adaptive execution sharing among queries.

2. We introduce the Hamlet graph to compactly capture trends
matched by queries in the workload. We partition the graph into
smaller graphlets by event types and time. Hamlet then selectively
shares trend aggregation in some graphlets among multiple queries.

3. We design a lightweight sharing benefit model to quantify the
trade-off between the benefit of sharing and the overhead of main-
taining the intermediate trend aggregates per query at runtime.

4. Based on the benefit of sharing sub-patterns, we propose an
adaptive sharing optimizer. It selects a subset of queries among
which it is beneficial to share this sub-pattern and determines the
time interval during which this sharing remains beneficial.

5. Our experiments on several real world stream data sets demon-
strate that Hamlet achieves up to five orders of magnitude perfor-
mance improvement over state-of-the-art approaches.

Outline. Section 2 describes preliminaries. Sections 3 and 4
propose the core Hamlet techniques: online trend aggregation and



dynamic sharing optimizer. We present experiments, review related
work and conclude the paper in Sections 5, 6, and 7, respectively.

2 PRELIMINARIES

2.1 Basic Notions

Time is represented by a linearly ordered set of time points (T, ≤),
where T ⊆ Q+ are the non-negative rational numbers. An event 𝑒

is a data tuple describing an incident of interest to the application.
An event 𝑒 has a time stamp 𝑒.𝑡𝑖𝑚𝑒 ∈ T assigned by the event
source. An event 𝑒 belongs to a particular event type 𝐸, denoted
e.type=E and described by a schema that specifies the set of event
attributes and the domains of their values. A specific attribute attr
of 𝐸 is referred to as 𝐸.attr . Table 2 summarizes the notation.

Events are sent by event producers (e.g., vehicles and mobile
devices) to an event stream 𝐼 . We assume that events arrive in order
by their time stamps. Existing approaches to handle out-of-order
events can be applied [11, 26, 27, 42].

An event consumer (e.g., Uber stream analytics) continuously
monitors the stream with event queries. We adopt the commonly
used query language and semantics from SASE [9, 45, 46]. The query
workload in Figure 1 is expressed in this language. We assume that
the workload is static. Adding or removing a query from a workload
requires migration of the execution plan to a new workload which
can be handled by existing approaches [24, 49].

Notation Description
𝑒.time Time stamp of event 𝑒
𝑒.type Type of event 𝑒
𝐸.attr Attribute attr of event type 𝐸
start (𝑞) Start types of the pattern of query 𝑞
end (𝑞) End types of the pattern of query 𝑞
pt (𝐸, 𝑞) Predecessor types of event type 𝐸 w.r.t query 𝑞
pe(𝑒, 𝑞) Predecessor events of event 𝑒 w.r.t query 𝑞
𝑛 Number of events per window
𝑔 Number of events per graphlet
𝑏 Number of events per burst
𝑘 Number of queries in the workload 𝑄
𝑘𝑠 Number of queries share the graphlet 𝐺𝐸

𝑘𝑛 Number of queries not share the graphlet 𝐺𝐸

𝑡 Number of event types per query
𝑠 Number of snapshots
𝑠𝑐 Number of snapshots created from one event burst
𝑠𝑝 Number of snapshots in one shared graphlet

Table 2: Table of notations

Definition 2.1. (Kleene Pattern) A pattern 𝑃 can be in the form
of 𝐸, 𝑃1+, (NOT 𝑃1), SEQ (𝑃1, 𝑃2), (𝑃1 ∨ 𝑃2), or (𝑃1 ∧ 𝑃2), where 𝐸
is an event type, 𝑃1, 𝑃2 are patterns, + is a Kleene plus, NOT is a
negation, SEQ is an event sequence, ∨ is a disjunction, and ∧ is a
conjunction. 𝑃1 and 𝑃2 are called sub-patterns of 𝑃 . If a pattern 𝑃

contains a Kleene plus operator, 𝑃 is called a Kleene pattern.

Definition 2.2. (Event Trend Aggregation Query) An event
trend aggregation query 𝑞 consists of five clauses:
• Aggregation result specification (RETURN clause),
• Kleene pattern 𝑃 (PATTERN clause) as per Definition 2.1,

• Predicates 𝜃 (optionalWHERE clause),
• Grouping 𝐺 (optional GROUPBY clause), and
•Window𝑤 (WITHIN/SLIDE clause).

Definition 2.3. (Event Trend) Let 𝑞 be an event trend aggre-
gation query. An event trend 𝑡𝑟 = (𝑒1, . . . , 𝑒𝑘 ) corresponds to a
sequence of events that conform to the pattern 𝑃 of 𝑞. All events in
a trend 𝑡𝑟 satisfy predicates 𝜃 , have the same values of grouping
attributes 𝐺 , and are within one window𝑤 of 𝑞.

Aggregation of Event Trends. Within each window of𝑞, event
trends are grouped by the values of grouping attributes 𝐺 . Aggre-
gates are then computed per group. Hamlet focuses on distribu-
tive (COUNT, MIN, MAX, SUM) and algebraic aggregation functions
(AVG) since they can be computed incrementally [16]. Let 𝐸 be an
event type, attr be an attribute of 𝐸, and 𝑒 be an event of type
𝐸. While COUNT(∗) returns the number of all trends per group,
COUNT(𝐸) computes the number of all events 𝑒 in all trends per
group. SUM(𝐸.attr) (AVG(𝐸.attr)) calculates the summation (aver-
age) of the value of attr of all events 𝑒 in all trends per group.
MIN(𝐸.attr) (MAX(𝐸.attr)) computes the minimal (maximal) value
of attr for all events 𝑒 in all trends per group.

2.2 Hamlet Approach in a Nutshell

Given a workload of event trend aggregation queries 𝑄 and a high-
rate event stream 𝐼 , the Multi-query Event Trend Aggregation

Problem is to evaluate the workload 𝑄 over the stream 𝐼 such that
the average query latency of all queries in 𝑄 is minimal.

Figure 2: Hamlet Framework

We design the Hamlet framework (Figure 2). To reveal all shar-
ing opportunities in the workload at compile time, the Hamlet
Optimizer identifies sharable queries and translates them into a
Finite State Automaton-based representation, called the merged
query template (Section 3.1). Based on this template, the optimizer
reveals which sub-patterns could potentially be shared by which
queries. At runtime, the optimizer estimates the sharing benefit de-
pending on the current stream characteristics to make fine-grained
sharing decisions. Each sharing decision determines which queries
share the processing of which Kleene sub-patterns and for how long
(Section 4). These decisions along with the template are encoded
into the runtime configuration to guide the executor.

Hamlet Executor partitions the stream by the values of group-
ing attributes. To enable shared execution despite different windows
of sharable queries, the executor further partitions the stream into
panes that are sharable across overlapping windows [10, 17, 24, 25].
Based on the merged query template for each set of sharable queries,
the executor compactly encodes matched trends within a pane into
the Hamlet graph. More precisely, matched events are modeled as
nodes, while event adjacency relations in a trend are edges of the



graph. Based on this graph, we incrementally compute trend aggre-
gates by propagating intermediate aggregates along the edges from
previously matched events to new events – without constructing
the actual trends. This reduces the time complexity of trend aggre-
gation from exponential to quadratic in the number of matched
events compared to two-step approaches [19, 22, 32, 46].

TheHamlet graph is partitioned into sub-graphs, called graphlets,
by event type and time stamps to maximally expose runtime oppor-
tunities to share these graphlets among queries. Since the aggre-
gate values may differ for distinct queries, we capture these values
per query as "snapshots" and share the propagation of snapshots
through shared graphlets (Section 3.3).

Lastly, the executor implements the sharing decisions imposed
by the optimizer. This may involve dynamically splitting a shared
graphlet into several non-shared graphlets or, vice-versa, merging
several non-shared graphlets into one shared graphlet (Section 4.2).

3 CORE HAMLET EXECUTION TECHNIQUES

Assumptions. To keep the discussion focused on the core concepts,
we make simplifying assumptions in Sections 3 and 4: (1) queries
compute the number of trends per window COUNT(∗); (2) query
patterns do not contain disjunction, conjunction nor negation; and
(3) Kleene plus operator is applied to an event type and appears
once per query. We drop them in the technical report [33].

In Section 3.1, we describe the workload and stream partitioning.
We introduce baseline non-shared execution in Section 3.2 versus
shared online trend aggregation in Section 3.3. In Section 4, we
present the runtime optimizer that makes these sharing decisions.

3.1 Workload Analysis and Stream Partitioning

Given that the workload may contain queries with different Kleene
patterns, aggregation functions, windows, and groupby clauses,
Hamlet takes the following pre-processing steps: (1) it breaks the
workload into sets of sharable queries at compile time; (2) it then
constructs the Hamlet query template for each sharable query set;
and (3) it partitions the stream by window and groupby clauses for
each query template at runtime.

Definition 3.1. (Shareable Kleene Sub-pattern) Let 𝑄 be a
workload and 𝐸 be an event type. Assume that a Kleene sub-pattern
𝐸+ appears in queries 𝑄𝐸 ⊆ 𝑄 and |𝑄𝐸 | > 1. We say that 𝐸+ is
shareable by queries 𝑄𝐸 .

However, sharable Kleene sub-patterns cannot always be shared
due to other query clauses. For example, queries having COUNT(∗),
MIN(𝐸. attr) or MAX(𝐸.attr) can only be shared with queries that
compute these same aggregates. In contrast, since AVG(𝐸.attr) is
computed as SUM(𝐸.attr) divided byCOUNT(𝐸), queries computing
AVG(𝐸.attr) can be shared with queries that calculate SUM(𝐸.attr)
or COUNT(𝐸). We therefore define sharable queries below.

Definition 3.2. (Sharable Queries) Two queries are sharable if
their patterns contain at least one sharable Kleene sub-pattern, their
aggregation functions can be shared, their windows overlap, and
their grouping attributes are the same.

To facilitate the shared runtime execution of each set of sharable
queries, each pattern is converted into its Finite State Automaton-
based representation [9, 14, 45, 46], called query template. We

adopt the state-of-the-art algorithm [34] to convert each pattern in
in the workload 𝑄 into its template.

Figure 3(a) depicts the template of query 𝑞1 with pattern SEQ(𝐴,
𝐵+). States, shown as rectangles, represent event types in the pat-
tern. If a transition connects a type 𝐸1 with a type 𝐸2 in a template
of a query 𝑞, then events of type 𝐸1 precede events of type 𝐸2 in a
trend matched by 𝑞. 𝐸1 is called a predecessor type of 𝐸2, denoted
𝐸1 ∈ pt(𝐸2, 𝑞). A state without ingoing edges is a start type, and a
state shown as a double rectangle is an end type in a pattern.

Example 3.3. In Figure 3(a), events of type 𝐵 can be preceded by
events of types 𝐴 and 𝐵 in a trend matched by 𝑞1, i.e., pt (𝐵, 𝑞1) =
{𝐴, 𝐵}. Events of type𝐴 start trends and events of type 𝐵 end trends
matched by 𝑞1, i.e., start (𝑞1) = {𝐴} and end (𝑞1) = {𝐵}.

Our Hamlet system processes the entire workload 𝑄 instead
of each query in isolation. To expose all sharing opportunities
in 𝑄 , we convert the entire workload 𝑄 into one Hamlet query

template. It is constructed analogously to a query template with
two additional rules. First, each event type is represented in the
merged template only once. Second, each transition is labeled by
the set of queries for which this transition holds.

Example 3.4. Figure 3(b) depicts the template for the workload
𝑄 = {𝑞1, 𝑞2} where query 𝑞1 has pattern SEQ(𝐴, 𝐵+) and query 𝑞2
has pattern SEQ(𝐶, 𝐵+). The transition from 𝐵 to itself is labeled by
two queries 𝑞1 and 𝑞2. This transition corresponds to the shareable
Kleene sub-pattern 𝐵+ in these queries (highlighted in gray).

The event stream is first partitioned by the grouping attributes.
To enable shared execution despite different windows of sharable
queries, Hamlet further partitions the stream into panes that are
sharable across overlapping windows [10, 17, 24, 25]. The size of a
pane is the greatest common divisor (gcd) of all window sizes and
window slides. For example, for twowindows (WITHIN 10𝑚𝑖𝑛 SLIDE
5𝑚𝑖𝑛) and (WITHIN 15𝑚𝑖𝑛 SLIDE 5𝑚𝑖𝑛), the gcd is 5 minutes. In
this example, a pane contains all events per 5 minutes interval. For
each set of sharable queries, we apply the Hamlet optimizer and
executor within each pane.

3.2 Non-Shared Online Trend Aggregation

For the baseline non-shared execution, the Hamlet executor lever-
ages the state-of-the-art approach [34]. Given a query 𝑞, it encodes
all trends matched by 𝑞 in a graph. The nodes in the graph are
events matched by 𝑞. Two events 𝑒 ′ and 𝑒 are connected by an edge
if 𝑒 ′ and 𝑒 are adjacent in a trend matched by 𝑞. The event 𝑒 ′ is
called a predecessor event of 𝑒 . At runtime, trend aggregates are
propagated along the edges. In this way, we aggregate trends online,
i.e., without actually constructing them.

Assume a query 𝑞 computes the number of trends COUNT(∗).
When an event 𝑒 is matched by 𝑞, 𝑒 is inserted in the graph for
𝑞 and the intermediate trend count of 𝑒 (denoted count (𝑒, 𝑞)) is
computed. count (𝑒, 𝑞) corresponds to the number of trends that
are matched by 𝑞 and end at 𝑒 . If 𝑒 is of start type of 𝑞, 𝑒 starts a
new trend. Thus, count (𝑒, 𝑞) is incremented by one (Equation 1).
In addition, 𝑒 extends all trends that were previously matched by
𝑞. Thus, count (𝑒, 𝑞) is incremented by the sum of the intermediate
trend counts of the predecessor events of 𝑒 that were matched by 𝑞
(denoted pe(𝑒, 𝑞)) (Equation 2). The final trend count of 𝑞 is the



(a) Query 𝑞1

(b) Workload𝑄 = {𝑞1, 𝑞2 }

Figure 3: Template

(a) Non-shared Greta graph (b) Shared Hamlet graph

Figure 4: Non-shared vs shared execution

sum of intermediate trend counts of all matched events of end type
of 𝑞 (Equation 3).

start (𝑒, 𝑞) =
{
1, if e.type ∈ start (𝑞)
0, otherwise

(1)

count (𝑒, 𝑞) = start (𝑒, 𝑞) +
∑

𝑒′∈pe(𝑒,𝑞)
count (𝑒 ′, 𝑞) (2)

fcount (𝑞) =
∑

e.type∈end(𝑞)
count (𝑒, 𝑞) (3)

Example 3.5. Continuing Example 3.4, Figure 4(a) shows the
graphs for the queries 𝑞1 and 𝑞2. For readability, we sort all events
by their types and timestamps. Events of types 𝐴, 𝐵, and 𝐶 are
displayed as gray, white, and striped circles, respectively. We high-
light the predecessor events of event 𝑏3 by edges. All other edges
are omitted for compactness. When 𝑏3 arrives, two trends (𝑎1, 𝑏3)
and (𝑎2, 𝑏3) are matched by 𝑞1. Thus, 𝑐𝑜𝑢𝑛𝑡 (𝑏3,𝑞1) = 𝑐𝑜𝑢𝑛𝑡 (𝑎1, 𝑞1) +
𝑐𝑜𝑢𝑛𝑡 (𝑎2, 𝑞1) = 2. However, only one trend (𝑐1, 𝑏3) is matched by
𝑞2. Thus, 𝑐𝑜𝑢𝑛𝑡 (𝑏3, 𝑞2) = 𝑐𝑜𝑢𝑛𝑡 (𝑐1, 𝑞2) = 1.

Complexity Analysis. Figure 4(a) illustrates that each event of
type 𝐵 is stored and processed once for each query in the workload
𝑄 , introducing significant re-computation and replication overhead.
Let 𝑘 denote the number of queries in the workload 𝑄 and 𝑛 the
number of events. Each query 𝑞 stores each matched event 𝑒 and
computes the intermediate trend count of 𝑒 per Equation 2. All
predecessor events of 𝑒 must be accessed, with 𝑒 having at most 𝑛
predecessor events. Thus, the time complexity of non-shared online
trend aggregation is computed as follows:

NonShared (𝑄) = 𝑘 × 𝑛2 (4)

Events that are matched by 𝑘 queries are replicated 𝑘 times
(Figure 4(a)). Each event stores its intermediate trend count. In
addition, one final trend count is stored per query. Thus, the space
complexity is 𝑂 (𝑘 × 𝑛 + 𝑘) = 𝑂 (𝑘 × 𝑛).

3.3 Shared Online Trend Aggregation

In Equation 4, the overhead of processing each event once per
query in the workload 𝑄 is represented by the multiplicative factor
𝑘 . Since the number of queries in a production workload may reach
hundreds to thousands [38, 44], this re-computation overhead can
be significant. Thus, we design an efficient shared online trend
aggregation strategy that encapsulates bursts of events of the same

type in a graphlet such that the propagation of trend aggregates
within these graphlets can be shared among several queries.

Definition 3.6. (Graphlet) Let 𝑞 ∈ 𝑄 be a query and𝑇 be a set of
event types that appear in the pattern of 𝑞. A graphlet 𝐺𝐸 is a graph
of events of type 𝐸, if no events of type 𝐸 ′ ∈ 𝑇, 𝐸 ′ ≠ 𝐸, are matched
by 𝑞 during the time interval (𝑒

f
.𝑡𝑖𝑚𝑒, 𝑒𝑙 .𝑡𝑖𝑚𝑒), where 𝑒

f
.𝑡𝑖𝑚𝑒 and

𝑒𝑙 .𝑡𝑖𝑚𝑒 are the timestamps of the first and the last events in 𝐺𝐸 ,
respectively. If new events can be added to a graphlet𝐺𝐸 without
violating the constraints above, the graphlet 𝐺𝐸 is called active.
Otherwise, 𝐺𝐸 is called inactive.

Definition 3.7. (Shared Graphlet, Hamlet Graph) Let 𝐸+ be
a Kleene sub-pattern that is shareable by queries 𝑄𝐸 ⊆ 𝑄 (Defini-
tion 3.1). We call a graphlet𝐺𝐸 of events of type 𝐸 a shared graphlet.
The set of all interconnected shared and non-shared graphlets for a
workload 𝑄 is called a Hamlet graph.

Example 3.8. In Figure 4(b), matched events are partitioned into
six graphlets 𝐴1–𝐵6 by their types and timestamps. For example,
graphlets 𝐵3 and 𝐵6 are of type 𝐵. They are shared by queries 𝑞1 and
𝑞2. In contrast to the non-shared strategy in Figure 4(a), each event
is stored and processed once for the entire workload 𝑄 . Events in
𝐴1–𝐶2 are predecessors of events in 𝐵3, while events in 𝐴1–𝐶5 are
predecessors of events in 𝐵6. For readability, only the predecessor
events of 𝑏3 are highlighted by edges in Figure 4(b). All other edges
are omitted. 𝑎1 and 𝑎2 are predecessors of 𝑏3 only for 𝑞1, while 𝑐1
is a predecessor of 𝑏3 only for 𝑞2.

Example 3.8 illustrates the following two challenges of online
shared event trend aggregation.

Challenge 1. Since queries 𝑞1 and 𝑞2 have different patterns, 𝑏3
has different predecessor events for 𝑞1 and 𝑞2. Thus, the computa-
tion of the intermediate trend count of 𝑏3 (and all other events in
graphlets 𝐵3 and 𝐵6) cannot be directly shared by 𝑞1 and 𝑞2.

Challenge 2. If queries 𝑞1 or 𝑞2 have predicates, the set of pre-
decessor events of an event may be different for 𝑞1 and 𝑞2. For
example, assume the edge (𝑏4, 𝑏5) holds for 𝑞1 but not for 𝑞2 due
to predicates. Then 𝑐𝑜𝑢𝑛𝑡 (𝑏4, 𝑞1) contributes to 𝑐𝑜𝑢𝑛𝑡 (𝑏5, 𝑞1), but
𝑐𝑜𝑢𝑛𝑡 (𝑏4, 𝑞2) does not contribute to 𝑐𝑜𝑢𝑛𝑡 (𝑏5, 𝑞2).

We tackle these challenges by introducing snapshots. Intuitively,
a snapshot is a variable whose value corresponds to an intermediate
trend count per query. In Figure 4(b), the propagation of a snapshot
𝑥 within graphlet 𝐵3 is shared by queries 𝑞1 and 𝑞2. We store the
values of 𝑥 per query (e.g., 𝑥 = 2 for 𝑞1 and 𝑥 = 1 for 𝑞2).



(a) Snapshot 𝑥 at graphlet level (b) Snapshots 𝑥 and 𝑦 at graphlet level (c) Snapshot z at event level

Figure 5: Snapshots at graphlet and event levels

Intermediate trend count

𝑏3 𝑥

𝑏4 𝑥 + 𝑐𝑜𝑢𝑛𝑡 (𝑏3, 𝑄) = 2𝑥
𝑏5 𝑥+𝑐𝑜𝑢𝑛𝑡 (𝑏3, 𝑄)+𝑐𝑜𝑢𝑛𝑡 (𝑏4, 𝑄) = 4𝑥

𝑏6
𝑥 + 𝑐𝑜𝑢𝑛𝑡 (𝑏3, 𝑄) + 𝑐𝑜𝑢𝑛𝑡 (𝑏4, 𝑄)+
𝑐𝑜𝑢𝑛𝑡 (𝑏5, 𝑄) = 8𝑥

Table 3: Shared propagation of x within B3

Query 𝑞1 Query 𝑞2
𝑥 𝑠𝑢𝑚(𝐴1, 𝑞1) = 2 𝑠𝑢𝑚(𝐶2, 𝑞2) = 1

𝑦

𝑣𝑎𝑙𝑢𝑒 (𝑥, 𝑞1)+
𝑠𝑢𝑚(𝐵3, 𝑞1)+
𝑠𝑢𝑚(𝐴4, 𝑞1) =

2 + 15 ∗ 2 + 2 = 34

𝑣𝑎𝑙𝑢𝑒 (𝑥, 𝑞2)+
𝑠𝑢𝑚(𝐵3, 𝑞2)+
𝑠𝑢𝑚(𝐶5, 𝑞2) =

1 + 15 ∗ 1 + 3 = 19
Table 4: Values of snapshots x and y per query

Query 𝑞1 Query 𝑞2

𝑧

𝑣𝑎𝑙𝑢𝑒 (𝑥, 𝑞1)+
𝑐𝑜𝑢𝑛𝑡 (𝑏3, 𝑞1)+
𝑐𝑜𝑢𝑛𝑡 (𝑏4, 𝑞1) = 8

𝑣𝑎𝑙𝑢𝑒 (𝑥, 𝑞2)+
𝑐𝑜𝑢𝑛𝑡 (𝑏3, 𝑞2) = 2

𝑦

𝑣𝑎𝑙𝑢𝑒 (𝑥, 𝑞1)+
𝑠𝑢𝑚(𝐵3, 𝑞1)+
𝑠𝑢𝑚(𝐴4, 𝑞1) = 34

𝑣𝑎𝑙𝑢𝑒 (𝑥, 𝑞2)+
𝑠𝑢𝑚(𝐵3, 𝑞2)+
𝑠𝑢𝑚(𝐶5, 𝑞2) = 15

Table 5: Values of snapshots z and y per query

Definition 3.9. (Snapshot at Graphlet Level) Let 𝐸 ′ and 𝐸 be
distinct event types. Let 𝐸+ be a Kleene sub-pattern that is shared
by queries 𝑄𝐸 ⊆ 𝑄 , 𝑞 ∈ 𝑄𝐸 . Let 𝐸 ′ ∈ pt (𝐸, 𝑞) and 𝐺𝐸′ and 𝐺𝐸 be
graphlets of events of types 𝐸 ′ and 𝐸, respectively. Assume for any
events 𝑒 ′ ∈ 𝐺𝐸′, 𝑒 ∈ 𝐺𝐸 , 𝑒 ′.𝑡𝑖𝑚𝑒 < 𝑒.𝑡𝑖𝑚𝑒 holds. A snapshot 𝑥 of
the graphlet𝐺𝐸′ is a variable whose value is computed per query 𝑞
and corresponds to the intermediate trend count of the query 𝑞 at
the end of the graphlet 𝐺𝐸′ .

value(𝑥, 𝑞) = sum(𝐺𝐸′, 𝑞) =
∑

𝑒′∈𝐺𝐸′

count (𝑒 ′, 𝑞) (5)

The propagation of snapshot 𝑥 through the graphlet 𝐺𝐸 follows
Equation 2 and is shared by queries 𝑄𝐸 .

Example 3.10. When graphlet 𝐵3 starts, a snapshot 𝑥 is created.
𝑥 captures the intermediate trend count of query 𝑞1 (𝑞2) based on
the intermediate trend counts of all events in graphlet 𝐴1 (𝐶2). 𝑥 is
propagated through graphlet 𝐵3 as shown in Figure 5(a) and Table 3.

Analogously, when graphlet 𝐵6 starts, a new snapshot 𝑦 is cre-
ated. The value of 𝑦 is computed for queries 𝑞1 (𝑞2) based on the
value of 𝑥 for 𝑞1 (𝑞2) and graphlets 𝐵3 and 𝐴4 (𝐶5). Figure 5(b) illus-
trates the connections between snapshots and graphlets. The edges
from graphlets 𝐴1 and 𝐴4 (𝐶2 and 𝐶5) hold only for query 𝑞1 (𝑞2).
Other edges hold for both queries 𝑞1 and 𝑞2.

Table 4 captures the values of snapshots 𝑥 and 𝑦 per query. For
compactness, 𝑠𝑢𝑚(𝐴1, 𝑞1) denotes the sum of intermediate trend
counts of all events in𝐴1 that are matched by𝑞1 (Equation 5). When
the snapshot 𝑦 is created, the value of 𝑥 per query is plugged in to
obtain the value of 𝑦 per query. The propagation of 𝑦 through 𝐵6 is
shared by 𝑞1 and 𝑞2. In this way, only one snapshot is propagated
at a time to keep the overhead of snapshot maintenance low.

To enable shared trend aggregation despite expressive predicates,
we now introduce snapshots at the event level.

Definition 3.11. (Snapshot at Event Level) Let𝐺𝐸 be a graphlet
that is shared by queries𝑄𝐸 ⊆ 𝑄 . Let 𝑞1, 𝑞2 ∈ 𝑄𝐸 and 𝑒1, 𝑒2 ∈ 𝐺𝐸 be
events such that the edge (𝑒1, 𝑒2) holds for 𝑞1 but does not hold for
𝑞2 due to predicates. A snapshot 𝑧 is the intermediate trend count

of 𝑒2 that is computed for 𝑞1 and 𝑞2 per Equation 2 and propagated
through the graphlet 𝐺𝐸 for all queries in 𝑄𝐸 .

Example 3.12. In Figure 5(c), assume the edge (𝑏4, 𝑏5) holds for𝑞1
but not for𝑞2 due to predicates. All other edges hold for both queries.
Then, 𝑐𝑜𝑢𝑛𝑡 (𝑏4, 𝑞1) contributes to 𝑐𝑜𝑢𝑛𝑡 (𝑏5, 𝑞1), but 𝑐𝑜𝑢𝑛𝑡 (𝑏4, 𝑞2)
does not contribute to 𝑐𝑜𝑢𝑛𝑡 (𝑏5, 𝑞2). To enable shared processing
of graphlet 𝐵3 despite predicates, we introduce a new snapshot 𝑧 as
the intermediate trend count of 𝑏5 and propagate 𝑧 within graphlet
𝐵3. Table 5 shows the values of 𝑧 and 𝑦 per query.

Shared Online Trend Aggregation Algorithm computes the
number of trends per query 𝑞 ∈ 𝑄 in the stream 𝐼 . For simplicity,
we assume that the stream 𝐼 contains events within one pane. For
each event 𝑒 ∈ 𝐼 of type 𝐸, Algorithm 1 constructs the Hamlet
graph and computes the trend count as follows.

Hamlet graph construction (Lines 4–14). When an event 𝑒 of
type 𝐸 is matched by a query 𝑞 ∈ 𝑄 , 𝑒 is inserted into a graphlet𝐺𝐸

that stores events of type 𝐸 (Line 14). if there is no active graphlet
𝐺𝐸 of events of type 𝐸, we create a new graphlet 𝐺𝐸 , mark it as
active and store it in the Hamlet graph𝐺 (Lines 7–8). If the graphlet
𝐺𝐸 is shared by queries 𝑄𝐸 ⊆ 𝑄 , then we create a snapshot 𝑥 at
graphlet level (Line 9). 𝑥 captures the values of intermediate trend
counts per query per Equation 5 at the end of graphlet 𝐺𝐸′ that
stores events of type 𝐸 ′, 𝐸 ′ ∈ 𝑝𝑡 (𝐸, 𝑞). We save the value of 𝑥 per
query in the table of snapshots 𝑆 (Lines 10–13). Also, for each query
𝑞 ∈ 𝑄 with event types 𝑇 , we mark all graphlets 𝐺𝐸′ of events of
type 𝐸 ′ ∈ 𝑇, 𝐸 ′ ≠ 𝐸, as inactive (Lines 4–6).

Trend count computation (Lines 16–24). If 𝐺𝐸 is shared by
queries 𝑄𝐸 ⊆ 𝑄 and the set of predecessor events of 𝑒 is identical
for all queries 𝑞 ∈ 𝑄𝐸 , then we compute 𝑐𝑜𝑢𝑛𝑡 (𝑒, 𝑞) per Equation 2
(Lines 16–18). If𝐺𝐸 is shared but the sets of predecessor events of 𝑒
differ among the different queries in 𝑄𝐸 due to predicates, then we
create a snapshot 𝑦 as the intermediate trend count of 𝑒 (Line 19).
We compute the value of 𝑦 for each query 𝑞 ∈ 𝑄𝐸 per Equation 2
and save it in the table of snapshots 𝑆 (Line 20). If𝐺𝐸 is not shared,
the algorithm defaults to the non-shared trend count propagation
per Equation 2 (Line 21). If 𝐸 is an end type for a query 𝑞 ∈ 𝑄 , we
increment the final trend count of 𝑞 in the table of results 𝑅 by the



intermediate trend count of 𝑒 for 𝑞 per Equation 3 (Lines 22–23).
Lastly, we return the table of results 𝑅 (Line 24). Due to the space
constraints, correctness of Algorithm 1 is proven in [33].

Data Structures. Algorithm 1 utilizes four data structures.
(1) Hamlet graph 𝐺 is a set of all graphlets. Each graphlet has

two metadata flags active and shared (Definitions 3.6 and 3.7).
(2) A hash table of snapshot coefficients per event 𝑒 . The in-

termediate trend count of 𝑒 may be an expression composed of
several snapshots. In Figure 5(c), 𝑐𝑜𝑢𝑛𝑡 (𝑏6, 𝑄) = 4𝑥 + 𝑧. Such com-
posed expressions are stored in a hash table per event that maps a
snapshot to its coefficient. In this example, 𝑥 ↦→ 4 and 𝑧 ↦→ 1 for 𝑏6.

(3) A hash table of snapshots 𝑆 is a mapping from a snapshot
𝑥 and a query 𝑞 to the value of 𝑥 for 𝑞 (Tables 4 and 5).

(4) A hash table of trend count results 𝑅 is a mapping from a
query 𝑞 to its corresponding trend count.

Algorithm 1 Hamlet shared online trend aggregation
Input: Query workload 𝑄 , event stream 𝐼 , Hamlet graph 𝐺 , hash

table of snapshots 𝑆
Output: Hash table of results 𝑅
1: 𝐺 ← ∅, 𝑆, 𝑅 ← empty hash tables
2: for each event 𝑒 ∈ 𝐼 with 𝑒.𝑡𝑦𝑝𝑒 = 𝐸 do

3: // Hamlet graph construction

4: for each 𝑞 ∈ 𝑄 with event types T do

5: for each 𝐸 ′ ∈ 𝑇, 𝐸 ′ ≠ 𝐸 do

6: 𝐺𝐸′ ← getGraphlet (𝐺, 𝐸 ′), 𝐺𝐸′ .active← false

7: if not 𝐺𝐸 .active then

8: 𝐺𝐸 ← createGraphlet (),𝐺𝐸 .active← true,𝐺 ← 𝐺∪𝐺𝐸

9: if 𝐺𝐸 .shared by 𝑄𝐸 ⊆ 𝑄 then 𝑥 ← createSnapshot ()
10: for each 𝑞 ∈ 𝑄𝐸 do

11: for each 𝐸 ′ ∈ pt (𝐸, 𝑞), 𝐸 ′ ≠ 𝐸 do

12: 𝐺𝐸′ ← getGraphlet (𝐺, 𝐸 ′)
13: 𝑆 (𝑥, 𝑞) ← 𝑆 (𝑥, 𝑞) + 𝑠𝑢𝑚(𝐺𝐸′, 𝑞) // Eq. 5
14: insert 𝑒 into 𝐺𝐸

15: // Trend count computation

16: if 𝐺𝐸 .shared by 𝑄𝐸 ⊆ 𝑄 then

17: if ∀𝑞 ∈ 𝑄𝐸 𝑝𝑒 (𝑒, 𝑞) are identical then
18: 𝑐𝑜𝑢𝑛𝑡 (𝑒,𝑄𝐸 ) ← 𝑐𝑜𝑢𝑛𝑡 (𝑒, 𝑞) // Eq. 2
19: else 𝑦 ← createSnapshot (), 𝑐𝑜𝑢𝑛𝑡 (𝑒,𝑄𝐸 ) = 𝑦

20: for each 𝑞 ∈ 𝑄𝐸 do 𝑆 (𝑦, 𝑞) ← 𝑐𝑜𝑢𝑛𝑡 (𝑒, 𝑞) // Eq. 2
21: else 𝑐𝑜𝑢𝑛𝑡 (𝑒, 𝑞) // Eq. 2
22: for each 𝑞 ∈ 𝑄 do

23: if 𝐸 ∈ end (𝑞) then 𝑅(𝑞) ← 𝑅(𝑞) + 𝑐𝑜𝑢𝑛𝑡 (𝑒, 𝑞) // Eq. 3
24: return 𝑅

Complexity Analysis. We use the notations in Table 2 and
Algorithm 1. For each event 𝑒 that is matched by a query 𝑞 ∈ 𝑄 ,
Algorithm 1 computes the intermediate trend count of 𝑒 in an online
fashion. This requires access to all predecessor events of 𝑒 . In the
worst case, 𝑛 previously matched events are the predecessor events
of 𝑒 . Since the intermediate trend count of 𝑒 can be an expression
that is composed of 𝑠 snapshots, the intermediate trend count of 𝑒
is stored in the hash table that maps snapshots to their coefficients.
Thus, the time complexity of intermediate trend count computation
is 𝑂 (𝑛 × 𝑠). In addition, the final trend count is updated per query
𝑞 if 𝐸 is an end type of 𝑞 in 𝑂 (𝑘 × 𝑠) time. In summary, the time

complexity of trend count computation is 𝑂 (𝑛 × (𝑛 × 𝑠 + 𝑘 × 𝑠)) =
𝑂 (𝑛2 × 𝑠) since 𝑛 ≥ 𝑘 .

In addition, Algorithm 1 maintains snapshots to enable shared
trend count computation. To compute the values of 𝑠 snapshots for
each query 𝑞 in the workload of 𝑘 queries, the algorithm accesses
𝑔 events in 𝑡 graphlets 𝐺𝐸′ of events of type 𝐸 ′ ∈ 𝑇, 𝐸 ′ ≠ 𝐸. Thus,
the time complexity of snapshot maintenance is𝑂 (𝑠 ×𝑘 ×𝑔 × 𝑡). In
summary, time complexity of Algorithm 1 is computed as follows:

Shared (𝑄) = 𝑛2 × 𝑠 + 𝑠 × 𝑘 × 𝑔 × 𝑡 (6)
Algorithm 1 stores each matched event in the Hamlet graph

once for the entire workload. Each shared event stores a hash table
of snapshot coefficients. Each non-shared event stores its interme-
diate trend count. In addition, the algorithm stores snapshot values
per query. Lastly, the algorithm stores one final result per query.
Thus, the space complexity is𝑂 (𝑛+𝑛×𝑠+𝑠×𝑘+𝑘) = 𝑂 (𝑛×𝑠+𝑠×𝑘).

4 DYNAMIC SHARING OPTIMIZER

We first model the runtime benefit of sharing trend aggregation
(Section 4.1). Based on this benefit model, our Hamlet optimizer
makes runtime sharing decisions for a given set of queries (Sec-
tion 4.2). Lastly, we describe how to choose a set of queries that
share a Kleene sub-pattern (Section 4.3).

4.1 Dynamic Sharing Benefit Model

On the up side, shared trend aggregation avoids the re-computation
overhead for each query in the workload. On the down side, it
introduces overhead to maintain snapshots. Next, we quantify the
trade-off between shared versus non-shared execution.

Equations 4 and 6 determine the cost of non-shared and shared
strategies of all events within the window for the entire workload
𝑄 based on stream statistics. In contrast to these coarse-grained
static decisions, the Hamlet optimizer makes fine-grained run-

time decisions for each burst of events for a sub-set of queries
𝑄𝐸 ⊆ 𝑄 . Intuitively, a burst is a set of consecutive events of type 𝐸,
the processing of which can be shared by queries 𝑄𝐸 that contain
a 𝐸+ Kleene sub-pattern. The Hamlet optimizer decides at run-
time if sharing a burst is beneficial. In this way, beneficial sharing
opportunities are harvested for each burst at runtime.

Definition 4.1. (Burst of Events) Let 𝐸+ be a sub-pattern that
is sharable by queries 𝑄𝐸 . Let 𝑇 be the set of event types that
appear in the patterns of queries 𝑄𝐸 , 𝐸 ∈ 𝑇 . A set of events of
type 𝐸 within a pane is called a burst 𝐵𝐸 , if no events of type
𝐸 ′ ∈ 𝑇, 𝐸 ′ ≠ 𝐸, are matched by the queries 𝑄𝐸 during the time
interval (𝑒

f
.𝑡𝑖𝑚𝑒, 𝑒𝑙 .𝑡𝑖𝑚𝑒), where 𝑒

f
.𝑡𝑖𝑚𝑒 and 𝑒𝑙 .𝑡𝑖𝑚𝑒 are the time-

stamps of the first and the last events in 𝐵𝐸 , respectively. If no
events can be added to a burst 𝐵𝐸 without violating the constraints
above, the burst 𝐵𝐸 is called complete.

Within each pane, events that belong to the same burst are
buffered until a burst is complete. The arrival of an event of type 𝐸 ′
or the end of the pane indicates that the burst is complete. In the
following, we refer to complete bursts as bursts for compactness.

Hamlet restricts event types in a burst for the following reason.
Assuming that a burst contained an event 𝑒 of type 𝐸 ′, the event
𝑒 could be matched by one query 𝑞1 but not by another query
𝑞2 in 𝑄𝐸 . Snapshots would have to be introduced to differentiate



(a) Shared 𝐵3 (b) Non-shared 𝐵3, 𝐵4 (c) Shared 𝐵3 (d) Non-shared 𝐵4, 𝐵5 (e) Non-shared 𝐵4, 𝐵5 (f) Shared 𝐵6

Figure 6: Dynamic sharing decisions. Decision to merge 𝐵3 in (a) and (b). Decision to split 𝐵3 in (c) and (d). Decision to merge 𝐵6 in (e) and (f).

between the aggregates of 𝑞1 and 𝑞2 (Section 3.3). Maintenance
of these snapshots may reduce the benefit of sharing. Thus, the
previous sharing decision may have to be reconsidered as soon as
the first event arrives that is matched by some queries in 𝑄𝐸 .

Definition 4.2. (Dynamic Sharing Benefit) Let 𝐸+ be a Kleene
sub-pattern that is shareable by queries𝑄𝐸 , 𝐵𝐸 be a burst of events
of type 𝐸, 𝑏 be the number of events in 𝐵𝐸 , 𝑠𝑐 be the number of
snapshots that are created from this burst 𝐵𝐸 , and 𝑠𝑝 be the number
of snapshots that are propagated to compute the intermediate trend
counts for the burst 𝐵𝐸 . Let 𝐺𝐸 denote a shared graphlet and 𝐺𝑖

𝐸
denote a set of non-shared graphlets (one graphlet per each query in
𝑄𝐸 ). Other notations are consistent with previous sections (Table 2).

The benefit of sharing a graphlet 𝐺𝐸 by the queries 𝑄𝐸 is com-
puted as the difference between the cost of the non-shared and
shared execution of the burst 𝐵𝐸 .

Shared (𝐺𝐸 , 𝑄𝐸 ) = 𝑏 × 𝑛 × 𝑠𝑝 + 𝑠𝑐 × 𝑘 × 𝑔 × 𝑡
NonShared (𝐺𝑖

𝐸 , 𝑄𝐸 ) = 𝑘 × 𝑏 × 𝑛
Benefit (𝐺𝐸 , 𝑄𝐸 ) = NonShared (𝐺𝑖

𝐸 , 𝑄𝐸 ) − Shared (𝐺𝐸 , 𝑄𝐸 ) (7)

If Benefit (𝐺𝐸 , 𝑄𝐸 ) > 0, then it is beneficial to share trend aggre-
gation within the graphlet 𝐺𝐸 by the queries 𝑄𝐸 .

Based on Definition 4.2, we conclude that the more queries 𝑘
share trend aggregation, the more events 𝑔 are in shared graphlets,
and the fewer snapshots 𝑠𝑐 and 𝑠𝑝 are maintained at a time, the
higher the benefit of sharing will be. Based on this conclusion, our
dynamic Hamlet optimizer makes sharing decides (Section 4.2).

4.2 Decision to Split and Merge Graphlets

The Hamlet optimizer monitors the sharing benefit depending on
changing stream conditions at runtime. Let 𝐵+ be a sub-pattern
sharable by queries 𝑄𝐵 = {𝑞1, 𝑞2}. In Figure 6, pane boundaries
are depicted as dashed vertical lines and bursts of newly arrived
events of type 𝐵 are shown as bold empty circles. For each burst, the
optimizer has a choice of sharing (Figure 6(a)) versus not sharing
(Figure 6(b)). It concludes that it is beneficial to share (Equation 8).

Shared (𝐵3, 𝑄𝐵) = 4 × 7 × 1 + 1 × 2 × 4 × 2 = 44
NonShared ({𝐵3, 𝐵4}, 𝑄𝐵) = 2 × 4 × 7 = 56
Benefit (𝐵3, 𝑄𝐵) = 56 − 44 = 12 > 0 (8)

Decision to Split. However, when the next burst of events of
type 𝐵 arrives, a new snapshot 𝑦 has to be created due to predicates
during the shared execution in Figure 6(c). In contrast, the non-
shared strategy processes queries 𝑞1 and 𝑞2 independently from
each other (Figure 6(d)). Now the overhead of snapshot maintenance

is no longer justified by the benefit of sharing (Equation 9).

Shared (𝐵3, 𝑄𝐵) = 4 × 11 × 2 + 1 × 2 × 8 × 2 = 120
NonShared ({𝐵4, 𝐵5}, 𝑄𝐵) = 2 × 4 × 11 = 88
Benefit (𝐵3, 𝑄𝐵) = 88 − 120 = −32 < 0 (9)

Thus, the optimizer decides to split the shared graphlet 𝐵3 into
two non-shared graphlets 𝐵4 and 𝐵5 for the queries 𝑞1 and 𝑞2
respectively in Figure 6(d). Newly arriving events of type 𝐵 then
must be inserted into both graphlets 𝐵4 and 𝐵5. Their intermediate
trend counts are computed separately for the queries 𝑞1 and 𝑞2. The
snapshot 𝑥 is replaced by its value for the query 𝑞1 (𝑞2) within the
graphlet 𝐵4 (𝐵5). The graphlets 𝐴1 and 𝐶2 are collapsed.

Decision to Merge. When the next burst of events of type 𝐵
arrives, we could either continue the non-shared trend count propa-
gation within 𝐵4 and 𝐵5 (Figure 6(e)) or merge 𝐵4 and 𝐵5 into a new
shared graphlet 𝐵6 (Figure 6(f)). The Hamlet optimizer concludes
that the latter option is more beneficial (Equation 10). As a conse-
quence, a new snapshot 𝑧 is created as input to 𝐵6. 𝑧 consolidates
the intermediate trend counts of the snapshot 𝑥 and the graphlets
𝐵3–𝐵5 per query 𝑞1 and 𝑞2.

Shared (𝐵6, 𝑄𝐵) = 4 × 15 × 1 + 1 × 2 × 4 × 2 = 76
NonShared ({𝐵4, 𝐵5}, 𝑄𝐵) = 2 × 4 × 15 = 120
Benefit (𝐵6, 𝑄𝐵) = 120 − 76 = 44 > 0 (10)

Complexity Analysis. The runtime sharing decision per burst
has constant time complexity because it simply plugs in locally
available stream statistics into Equation 7. A graphlet split comes
for free since we simply continue graph construction per query
(Figure 6(d)). Merging graphlets requires creation of one snapshot
and calculation of its values per query (Figure 6(f)). Thus, the time
complexity of graphlet merge is 𝑂 (𝑘 × 𝑔 × 𝑡) (Equation 6). Since
our workload is fixed (Section 2), the number of queries 𝑘 and
the number of types 𝑡 per query are constants. Thus, the time
complexity of merge is linear in the number of events per graphlet
𝑔. Merging graphlets requires storing the value of one snapshot per
query. Thus, its space complexity is 𝑂 (𝑘).

4.3 Choice of Query Set

To relax the assumption from Section 4.2 that a set of queries 𝑄𝐸

that share a Kleene sub-pattern 𝐸+ is given, we now select a sub-set
of queries 𝑄𝐸 from the workload 𝑄 for which sharing 𝐸+ is the
most beneficial among all other sub-sets of𝑄 . In general, the search
space of all sub-sets of 𝑄 is exponential in the number of queries
in 𝑄 since all combinations of shared and non-shared queries in 𝑄
are considered. For example, if 𝑄 contains four queries, Figure 7
illustrates the search space of 12 possible execution plans of 𝑄 .



Groups of queries in braces are shared. For example, the plan (134)(2)
denotes that queries 1, 3, 4 share their execution, while query 2
is processed separately. The search space ranges from maximally
shared (top node) to non-shared (bottom node) plans. Each plan has
its execution cost associated with it. For example, the cost of the
plan (134)(2) is computed as the sum of 𝑆ℎ𝑎𝑟𝑒𝑑 (𝐺𝐸 , {1, 3, 4}) and
𝑁𝑜𝑛𝑆ℎ𝑎𝑟𝑒𝑑 (𝐺𝑖

𝐸
, 2) (Equation 7). The goal of the dynamic Hamlet

optimizer is to find a plan with minimal execution cost.

Figure 7: Search space of sharing plans

Traversing the exponential search space for each Kleene sub-
pattern and each burst of events would jeopardize real-time respon-
siveness of Hamlet. Fortunately, most plans in this search space
can be pruned without loosing optimality (Theorems 4.3 and 4.5).
Intuitively, Theorem 4.3 states that it is always beneficial to share
the execution of a query that introduces no new snapshots.

Theorem 4.3. Let 𝐸+ be a Kleene sub-pattern that is shared by a

set of queries𝑄𝐸 and not shared by a set of queries𝑄𝑁 ,𝑄𝐸 ∩𝑄𝑁 = ∅,
𝑘𝑠 = |𝑄𝐸 |, and 𝑘𝑛 = |𝑄𝑁 |. For a burst of events of type 𝐸, let 𝑞 ∈ 𝑄𝐸

be a query that does not introduce new snapshots due to predicates

for this burst of events (Definition 3.11). Then the following holds:

Shared (𝑄𝐸 ) + NonShared (𝑄𝑁 ) ≤
Shared (𝑄𝐸 \ {𝑞}) + NonShared (𝑄𝑁 ∪ {𝑞})

Due to space limitations, proof of Theorem 4.3 is in [33]. We
formulate the following pruning principle per Theorem 4.3.

Snapshot-Driven Pruning Principle. Plans at Level 2 of the
search space that do not share queries that introduced no snapshots
are pruned. All descendants of such plans are also pruned.

Example 4.4. In Figure 7, assume queries 1 and 3 introduced no
snapshots, while queries 2 and 4 introduced snapshots. Then, four
plans are considered because they share queries 1 and 3 with other
queries. These plans are highlighted by frames. The other eight
plans are pruned since they have higher execution costs.

Theorem 4.5 states that if it is beneficial to share the execution
of a query 𝑞 with other queries𝑄 , a plan that processes 𝑞 separately
from queries𝑄𝐸 ⊆ 𝑄 will have higher costs than a plan that shares
𝑞 with 𝑄𝐸 . The reverse of the statement also holds. Namely, if it is
not beneficial to share the execution of 𝑞 with queries𝑄 , a plan that
shares the execution of 𝑞 with queries 𝑄𝐸 ⊆ 𝑄 will have higher
costs than a plan that processes 𝑞 separately from 𝑄𝐸 .

Theorem 4.5. Let 𝐸+ be a Kleene sub-pattern that is shareable by

queries 𝑄 , 𝑄 = 𝑄𝐸 ∪𝑄𝑁 , and 𝑞 ∈ 𝑄𝐸 . Then the following holds:

If Shared (𝑄) ≤ Shared (𝑄 \ {𝑞}) + NonShared (𝑞),
then Shared (𝑄𝐸 ) + NonShared (𝑄𝑁 ) ≤

Shared (𝑄𝐸 \ {𝑞}) + NonShared (𝑄𝑁 ∪ {𝑞})
This statement also holds if we replace all ≤ by ≥.

Proof of Theorem 4.5 is in the technical report [33]. We formulate
the following pruning principle per Theorem 4.5.

Benefit-Driven Pruning Principle. Plans at Level 2 of the search
space that do not share a query that is beneficial to share are pruned.
Plans at Level 2 of the search space that share a query that is not
beneficial to share are pruned. All descendants of such plans are
also pruned.

Example 4.6. In Figure 7, if it is beneficial to share query 2, then
we can safely prune all plans that process query 2 separately. That
is, the plan (134)(2) and all its descendants are pruned. Similarly,
if it is not beneficial to share query 4, we can safely exclude all
plans that share query 4. That is, all siblings of (123)(4) and their
descendants are pruned. The plan (123)(4) is chosen (highlighted
by a bold frame).

Consequence of Pruning Principles. Based on all plans at Lev-
els 1 and 2 of the search space, the optimizer classifies each query
in the workload as either shared or non-shared. Thus, it chooses
the optimal plan without considering plans at levels below 2.

Complexity Analysis. Given a burst of new events, let𝑚 be
the number of queries that introduce new snapshots to share the
processing of this burst of events. The number of plans at Levels
1 and 2 of the search space is 𝑚 + 1. Thus both time and space
complexity of sharing plan selection is 𝑂 (𝑚).

Granularity of Hamlet Sharing Decision. Hamlet runtime
sharing decisions are made per burst of events (Section 4.2). There
can be several bursts per window (Definition 4.1). Within one burst,
Hamlet has optimal time complexity [33]. According to the com-
plexity analysis in Section 4.2, the choice of the query set has linear
time complexity in the number of queries𝑚 that introduce snap-
shots due to predicates. By Section 4.3, the graphlet merge has linear
time complexity in the number of events 𝑔 per graphlet. Hamlet
would be optimal per window if it could make sharing decisions
at the end of each window. However, waiting until all events per
window arrive could introduce delays and jeopardise real-time re-
sponsiveness. Due to this low latency constraint, Hamlet makes
sharing decisions per burst, achieving significant performance gain
over competitors (Section 5.2).

5 EXPERIMENTAL EVALUATION

5.1 Experimental Setup

Infrastructure. We have implemented Hamlet in Java with JDK
1.8.0_181 running on Ubuntu 14.04 with 16-core 3.4GHz CPU and
128GB of RAM. Our code is available online [1]. We execute each
experiment three times and report their average results here.

Data Sets. We evaluate Hamlet using four data sets.
• New York city taxi and Uber real data set [8] contains 2.63

billion taxi and Uber trips in New York City in 2014–2015. Each
event carries a time stamp in seconds, driver and rider identifiers,
pick-up and drop-off locations, number of passengers, and price.
The average number of events per minute is 200.
• Smart home real data set [2] contains 4055 million measure-

ments for 2125 plugs in 40 houses. Each event carries a timestamp in
seconds, measurement, house identifiers, and voltage measurement
value. The average number of events per minute is 20K.



• Stock real data set [5] contains up to 20 years of stock price
history. Our sample data contains 2 million transaction records
of 220 companies for 8 hours. Each event carries a time stamp
in minutes, company identifier, price, and volume. The average
number of events per minute is 4.5K.
• Ridesharing data set was created by our stream generator to

control the rate and distribution of events of different types in
the stream. This stream contains events of 20 event types such as
request, pickup, travel, dropoff, cancel, etc. Each event carries a time
stamp in seconds, driver and rider identifiers, request type, district,
duration, and price. The attribute values are randomly generated.
The average number of events per minute is 10K.

Event Trend Aggregation Queries. For each data set, we gen-
erated workloads similar to queries 𝑞1–𝑞3 in Figure 1. We experi-
mented with the two types of workloads described below.
• The first workload focuses on sharing Kleene closure because

this is the most expensive operator in event trend aggregation
queries (Definition 2.2). Further, the sharing of Kleene closure is a
much overlooked topic in the literature; while the sharing of other
query clauses (windows, grouping, predicates, and aggregation) has
been well-studied in prior research and systems [10, 17, 24, 25, 28].
Thus, queries in this workload are similar to Examples 3.3–4.6.
Namely, they have different patterns but their sharable Kleene sub-
pattern, window, groupby clause, predicates, and aggregates are
the same. We evaluate this workload in Figures 8–10.
• The second workload is more diverse since the queries have

sharable Kleene patterns of length ranging from 1 to 3, windows
sizes ranging from 5 to 20minutes, different aggregates (e.g.,COUNT,
AVG, MAX, etc.), as well as groupbys and predicates on a variety of
event types. We evaluate this workload in Figures 11–12.

The rate of events differs in different real data sets [2, 5, 8] that
we used in our experiments. The window sizes are also different in
the query workloads per data set. To make the results comparable
across data sets, we vary the number of events per minute by a
speed-up factor; which corresponds to the number of events per
window divided by the window size in minutes. The default number
of events per minute per data set is included in the description of
each data set. Unless stated otherwise, the workload consists of 50
queries. We vary the major cost factors per Definition 4.2, namely,
the number of events and the number of queries.

Methodology. We experimentally compare Hamlet to the fol-
lowing state-of-the-art approaches:
• MCEP [22] is the most recently published state-of-the-art

shared two-step approach. MCEP constructs all event trends prior to
computing their aggregation. As shown in [22], it shares event trend
construction. It outperforms other shared two-step approaches
SPASS [39] and MOTTO [48].
• Sharon [36] is a shared approach that computes event se-

quence aggregation online. That is, it avoids sequence construction
by incrementally maintaining a count for each pattern. Sharon
does not support Kleene closure. To mimic Kleene queries, we flat-
ten them as follows. For each Kleene pattern 𝐸+, we estimate the
length 𝑙 of the longest match of 𝐸+ and specify a set of fixed-length
sequence queries that cover all possible lengths up to 𝑙 .
• Greta [34] supports Kleene closure and computes event trend

aggregation online, i.e, without constructing all event trends. It
achieves this online event trend aggregation by encoding all matched

events and their adjacency relationships in a graph. However, Greta
does not optimize for sharing computations in a workload. That is,
each query is processed independently as described in Section 3.2.

Metrics. We measure latency in seconds as the average time
difference between the time point of the aggregation result output
by a query and the arrival time of the latest event that contributed to
this result. Throughput corresponds to the average number of events
processed by all queries per second. Peak memory consumption,
measured in bytes, corresponds to the maximal memory required
to store snapshot expressions for Hamlet, the current event trend
for MCEP, aggregates for Sharon, and matched events for Hamlet,
MCEP, and Greta.

5.2 Experimental Results

Hamlet versus State-of-the-art Approaches. In Figures 8 and
9, we measure all metrics of all approaches while varying the num-
ber of events per minute from 10K to 20K and the number of queries
in the workload from 5 to 25. We intentionally selected this setting
to ensure that the two-step approach MCEP, the non-shared ap-
proach Greta, and the fixed-length sequence aggregation approach
Sharon terminate within a few hours.

(a) Latency vs #events (b) Latency vs #queries

(c) Throughput vs #events (d) Throughput vs #queries

Figure 8: Hamlet versus state-of-the-art approaches (Ridesharing)

With respect to throughput, Hamlet consistently outperforms
Sharon by 3–5 orders of magnitude, Greta by 1–2 orders of mag-
nitude, and MCEP 7–76-fold (Figures 8(c) and 8(d)). We observe
similar improvement with respect to latency in Figures 8(a) and
8(b). While Hamlet terminates within 25 milliseconds in all cases,
Sharon needs up to 50 minutes, Greta up to 3 seconds, and MCEP
up to 1 second. With respect to memory consumption, Hamlet,
Greta, and MCEP perform similarly, while Sharon requires 2–3
orders of magnitude more memory than Hamlet in Figure 9.

Such poor performance of Sharon is not surprising because
Sharon does not natively support Kleene closure. To detect all



Kleene matches, Sharon runs a workload of fixed-length sequence
queries for each Kleene query. This overhead dominates the latency
and throughput of Sharon. In contrast to Sharon, Greta and
MCEP terminate within a few seconds in this low setting because
both approaches not only support Kleene closure but also optimize
its processing. In particular, Greta computes trend aggregation
without constructing the trends but does not share trend aggre-
gation among different queries in the workload. MCEP shares the
construction of trends but computes trend aggregation as a post-
processing step. Due to these limitations, Hamlet outperforms
both Greta and MCEP with respect to all metrics.

(a) Memory vs #events (b) Memory vs #queries

Figure 9: Hamlet vs state-of-the-art (Ridesharing)

(a) Latency vs #events (NYC) (b) Latency vs #events (SH)

(c) Throughput vs #events (NYC) (d) Throughput vs #events (SH)

(e) Latency vs #queries (f) Throughput vs #queries

Figure 10: Hamlet versus state-of-the-art approaches (NYCity Taxi

(NYC) and Smart Home (SH) data sets)

However, the low setting in Figures 8 and 9 does not reveal the
full potential of Hamlet. Thus in Figure 10, we compare Hamlet

to the most advanced state-of-the-art online trend aggregation
approach Greta using two real data sets. We measure latency
and throughput, while varying the number of events per minute
and the number of queries in the workload. Hamlet consistently
outperforms Greta with respect to throughput and latency by 3–5
orders of magnitude. In practice this means that the response time
of Hamlet is within half a second, while Greta runs up to 2 hours
and 17 minutes for 400 events per minute in Figure 10(a).

Dynamic versus Static Sharing Decisions. Figures 11 and 12
compare the effectiveness of Hamlet dynamic sharing decisions
to static sharing decisions. Each burst of events that can be shared
contains 120 events on average in the stock data set. Our Ham-
let dynamic optimizer makes sharing decisions at runtime per
each burst of events (Section 4.1). The Hamlet executor splits and
merges graphlets at runtime based on these optimization instruc-
tions (Section 4.2). The number of all graphlets ranges from 400
to 600, while the number of shared graphlets ranges from 360 to
500. In this way, Hamlet efficiently shares the beneficial Kleene
sub-patterns within a subset of queries during its execution.

(a) Latency vs #events (b) Latency vs #queries

(c) Throughput vs #events (d) Throughput vs #queries

Figure 11: Dynamic versus static sharing decisions (Stock data set)

In Figures 11(a), 11(c) and 12(a), as the number of events per
minute increases from 2K to 4K, the number of snapshots main-
tained by the Hamlet executor grows from 4K to 8K. As soon as
the overhead of snapshot maintenance outweighs the benefits of
sharing, the Hamlet optimizer decides to stop sharing. The Ham-
let executor then splits these shared graphlets (Section 4.2). The
Hamlet dynamic optimizer shares 90% of bursts. The rest 10% of
the bursts are not shared which substantially reduces the number
of snapshots by 50% compared to the shared execution.

In contrast, the static optimizer decides to share certain Kleene
sub-patterns by a fixed set of queries during the entire window.
Since these decisions are made at compile time, they do not incur
overhead at runtime. However, these static decisions do not take the



stream fluctuations into account. Consequently, these sharing deci-
sions may do more harm than good by introducing significant CPU
overhead of snapshot maintenance, causing non-beneficial shared
execution. During the entire execution, the static optimizer always
decides to share, and the number of snapshots grows dramatically
from 10K to 20K. Therefore, our Hamlet dynamic sharing approach
achieves 21–34% speed-up and 27–52% throughput improvement
compared to the executor that obeys to static sharing decisions.

(a) Memory vs #events (b) Memory vs #queries

Figure 12: Dynamic versus static sharing decisions (Stock data set)

We observe similar gains of Hamlet with respect to memory
consumption in Figure 12(a). Hamlet reduces memory by 25%
compared to the executor based on static sharing decisions because
the number of snapshots introduced by Hamlet dynamic sharing
decisions is much less than the number of snapshots introduced by
the static sharing decisions.

We also vary the number of queries in the workload from 20
to 100, and we observe similar gains by Hamlet dynamic sharing
optimizer in terms of latency, throughput, and memory (depicted
in Figures 11(b), 11(d), and 12(b)). Hamlet can effectively leverage
the beneficial sharing opportunities within a large query workload.

Lastly, we measured the runtime overhead of the Hamlet dy-
namic sharing decisions. Even though the number of sharing deci-
sions ranges between 400 and 600 per window, the latency incurred
by these decisions stays within 20 milliseconds (less than 0.2% of
total latency per window) because these decisions are light-weight
(Section 4.2). Also, the latency of one-time static workload analy-
sis (Section 3.1) stays within 81 milliseconds. Thus, we conclude
that the overhead of dynamic decision making and static workload
analysis are negligible compared to their gains.

6 RELATEDWORK

Complex Event Processing Systems (CEP) have gained popular-
ity in the recent years [3, 4, 6, 7]. Some approaches use a Finite State
Automaton (FSA) as an execution framework for pattern match-
ing [9, 14, 45, 46]. Others employ tree-based models [31]. Some
approaches study lazy match detection [23], compact event graph
encoding [32], and join plan generation [21]. We refer to the recent
survey [15] for further details. While these approaches support
trend aggregation, they construct trends prior to their aggregation.
Since the number of trends is exponential in the number of events
per window [37, 46], such two-step approaches do not guarantee
real-time response [34, 35]. Worse yet, they do not leverage sharing
opportunities in the workload. The re-computation overhead is
substantial for workloads with thousands of queries.

Online Event Trend Aggregation. Similarly to single-event
aggregation, event trend aggregation has been actively studied.

A-Seq [37] introduces online aggregation of event sequences, i.e.,
sequence aggregation without sequence construction. Greta [34]
extends A-Seq by Kleene closure. Cogra [35] further generalizes
online trend aggregation by various event matching semantics.
However, none of these approaches addresses the challenges of
multi-query workloads, which is our focus.

CEP Multi-query Optimization follows the principles com-
monly used in relational database systems [41], while focusing on
pattern sharing techniques. RUMOR [19] defines a set of rules for
merging queries in NFA-based RDBMS and stream processing sys-
tems. E-Cube [28] inserts sequence queries into a hierarchy based
on concept and pattern refinement relations. SPASS [39] estimates
the benefit of sharing for event sequence construction using intra-
query and inter-query event correlations. MOTTO [48] applies
merge, decomposition, and operator transformation techniques to
re-write pattern matching queries. Kolchinsky et al. [22] combine
sharing and pattern reordering optimizations for both NFA-based
and tree-based query plans. However, these approaches do not
support online aggregation of event sequences, i.e., they construct
all event sequences prior to their aggregation, which degrades
query performance. To the best of our knowledge, Sharon [36] and
Muse [40] are the only solutions that support shared online aggre-
gation. However, Sharon does not support Kleene closure. Worse
yet, Sharon and Muse make static sharing decisions. In contrast,
Hamlet harnesses additional sharing benefit thanks to dynamic
sharing decisions depending on the current stream properties.

Multi-query Processing over Data Streams. Sharing query
processing techniques are well-studied for streaming systems. Nia-
garaCQ [13] is a large-scale system for processing multiple contin-
uous queries over streams. TelegraphCQ [12] introduces a tuple-
based dynamic routing for inter-query sharing [29]. AStream [20]
shares computation and resources among several queries executed
in Flink [4]. Several approaches focus on sharing optimizations
given different predicates, grouping, or window clauses [10, 17, 18,
24, 25, 43, 47]. However, these approaches evaluate Select-Project-
Join queries with windows and aggregate single events. They do
not support CEP-specific operators such as event sequence and
Kleene closure that treat the order of events as a first-class citizen.
Typically, they require the construction of join results prior to their
aggregation. In contrast, Hamlet not only avoids the expensive
event trend construction, but also exploits the sharing opportunities
among trend aggregation queries with diverse Kleene patterns.

7 CONCLUSIONS

Hamlet integrates a shared online trend aggregation execution
strategy with a dynamic sharing optimizer to maximize the benefit
of sharing. It monitors fluctuating streams, recomputes the sharing
benefit, and switches between shared and non-shared execution
at runtime. Our experimental evaluation demonstrates substantial
performance gains of Hamlet compared to state-of-the-art.
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