ATHENA++: Natural Language Querying
for Complex Nested SQL Queries

Jaydeep Sen?, Chuan Lei2, Abdul Quamar?, Fatma Ozcan?, Vasilis Efthymiou? Ayushi Dalmia?,
Greg Stager3, Ashish Mittal?, Diptikalyan Sahal,Karthik Sankaranarayanani.

1IBM Research - India, 2IBM Research - Almaden, 3IBM Canada

VLDB 2020 / Aug, 2020 / © 2020 IBM Corporation T === 1

Introduction

> Natural language querying for nested queries.

> Existing NLIDB systems do not focus on BI queries with nesting.

e BI queries . . . SQLs
'@
ah - - —
esultts esults
Business Users Analysts/SQL Experts Backend Database

BI queries SQLs

»
»

Results ATHENA++ Results

> Aim is to democratize access to BI insights for business users.
» Without depending on SQL experts/analysts or the need to know the schema or SQL language.

VLDB 2020 / Aug, 2020 / © 2020 IBM Corporation

Nested Queries - Challenges

Transaction.type MonetaryAmount.value
t t
Example: “Show me everyone who bought stocks that have gone up in value”
v } }

Person, Customer,

Account Manager ListedSecurity Operator: ‘>

Interpretation Tree (/Tree,) Interpretation ° Nested Query Detection:

Tree (ITree,)

Transaction ListedSecurity [Tree,. ° HOW to deteCt neSting?

date Monetsgl/&mount. ListedSecurity
] - * * Subquery Formation:

Account MonetaryAmount ITree,.

? o MonetaryAmount. | MonetaryAmount » How to divide the query into subqueries?

e el value ® « Subquery Joining:
0 e « How to join subquery results?

Outer query graph Inner query graph
Join condition

VLDB 2020/ Aug, 2020 / © 2020 IBM Corporation

Architecture

Nested Query Detector

Evidence Operation
Annotator Annotator

Translation
Index Nested Query Classifier

Evidence Partitioner

Nested Query Builder

Join Condition
Generator

Domain Interpretation
Ontology Tree Generator

Hierarchical Query Generation

Ranked OQL Queries

Ontology to

Database Query Translator
Mapping

VLDB 2020/ Aug, 2020 / © 2020 IBM Corporation

Relational
Database

qguestion

\ 4

Token Annotations

Nested Query
Detector

Subquery
Foration

Interpretation Tree
Generator

Join Condition
Generator

Hierarchical Query
Building

Inside ATHENA++

Show me everyone who bought stocks
in 2019 that have gone up in value

|

everyone: [Person, Customer, Manager],
bought: [Transaction.type],
stocks: [ListedSecurity,]

value: [MonetaryAmount.value],
gone up:[Operator (‘>’)], in 2019: [Time Comparison]

v
Nested Query Detected

¥ Outer Query Inner Query v
{everyone, bought, stocks, 2019, value} {stocks, 2019, value}

L

Interpretation Tree (/Tree;)

Interpretation \
Tree (ITree,)

Transaction ListedSecurity

date @ @

Account MonetaryAmount

ListedSecurity

Person Vallg

Interpretation Tree (/Tree;) Interpretation

Tree (ITree,)
Transaction ListedSecurity [Tree,.

o MonetaryAmount.
date value

>
ITree,.

ListedSecurity

Account MonetaryAmount

MonetaryAmount. | MonetaryAmount
value

Person value

Output SQL Query

Detection: Intuition and Examples

» Annotate tokens based on their semantic role
> Detect if query belongs to one of the 4 nesting types: A, N, J, JA.

Query Aggregation Correlation between Division
| Entity [customer.stocks,etc. | T : :
Instance || IBM, California, ete. | Types Inner & Outer Queries | Predicate

‘ Time | since 2010, in 2019, from 2010 to 2019, etc.
Numeric | 16.8, sixty eight, etc.
| Measure || revenue, price, value, volume of trade, etc.
| count of, number of, how many, etc.
Aggregation | total/sum, max, min, average, etc.
more/less than, gone up, etc.
Comparison || equal, same, also, too, etc.
not equal, different, another, etc.
| Negation | no, not, none, nothing, etc.

» Show me the customers who are account managers.
between two separate entities => Type N

» Show me everyone who bought stocks in 2019 that have in value?
between a co-ref and measure => Type J

» Who bought Alphabet stocks with price his average buying price in 2019?
with an aggregation result having a co-ref => Type JA

VLDB 2020 / Aug 2020 / ® 2020 IBM Corporation

[62]

Subquery Formation: Intuition and Example

> Position of join token is treated as the boundary to initialize subquery tokens.
> We design heuristics on how to share tokens across outer and inner query.
» Heuristics depend on the annotations and nested type detected.

_I
I__-

Heuristic 1: co-referred entities to be shared.

Heuristic 2: time mentions are to be shared (if missing).

Heuristic 3: instance sharing when inner does not have aggregation.
Heuristic 4: focus sharing for non-numeric comparison queries.

Heuristic 5: comparison argument sharing across subqueries (if missing).

5|
e | v

» Show me everyone who bought stocks in 2019 that have

Heuristic 6: dependent entity/instance to be shared.

in value

> {everyone, bought, stocks, in 2019}, {value}
(Apply heuristics: Argument Sharing, Time Sharing, Dependent Entity Sharing)
> {everyone, bought, stocks, in 2019, value} <->{stocks, in 2019, value}

VLDB 2020 / Aug 2020 / © 2020 IBM Corporation

| |

l

1
..||i
L

o

Subquery Join: Intuition and Example

» Building individual subqueries with their respective tokens including shared tokens.

» Figuring out the right join condition between subqueries.
» Hierarchical query building by joining Outer and Inner subqueries.

Transaction.type MonetaryAmount.value
t
Example: “Show me ev%ryone who bought si[ocks that have gone up in value”
s, LUSIemEL, ListedSecurity Operator: >’
Account Manager

Outer: {everyone, bought, stocks, in 2019, value} | join Op: >’ | Inner: {stocks, in 2019, value}

Interpretation Tree (/Treey) Interpretation
Tree (ITree,)

> Steiner tree-based algorithm (ATHENA-PVLDB’16)
for each subquery formation

» Subquery joining depends on join types
e.g., '>'is a numeric comparator that can be applied on
the measure 'value'

Transaction ListedSecurity [Tree,.
date)) MonetaryAmount. | | jstedSecurity

value ®

>
Account MonetaryAmount ITree,.

o ® MonetaryAmount. | MonetaryAmount

value (\

Person value

C) value

VLDB 2020 / Aug 2020 / © 2020 IBM Corporation

| [
l
1

||||i
~

A New Benchmark: FIBEN

Schema

» Conforms to the combination of two standard finance ontologies: FIBO and FRO

» Contains information on

» Security transactions, insider history, financial metrics, industry info, etc.

» Emulates a real data mart in finance.

Queries

» 300 pairs of <NL,SQL> queries with 237 unique SQLs, 170 of them nested.
» Specifically focus on BI queries as obtained from BI experts.

» Covers enough examples of different types of nested queries.

» Open-sourced at: https://github.com/IBM/fiben-benchmark

VLDB 2020 / Aug 2020 / © 2020 IBM Corporation

Results

Overall Accuracy % Nested Query Accuracy %

Data Set | ATHENA++ | ATHENA | NaLIR | | | Data Set | ATHENA++ | ATHENA | NaLIR |

MAS | 846l | 6103 | 408 |§[MAS | 7837 [1081 | 810 |
GEo | w25 | es20 | atoa |f[GE0 | 7857 | 1704 | 857 |

“Spider | 7882 | 5493 | - | [Spider | 7826 | 9093 | - |
“FIBEN | 8833 | 4800 | 2066 | [FBEN | 8588 | 1529 | 705 |

» ATHENA++ outperforms NALIR and ATHENA on all benchmarks.
» Only ATHENA++ achieves a decent accuracy for nested queries.
» Accuracy gap is significant in FIBEN which includes maximum # nested queries.

VLDB 2020 / Aug 2020 / © 2020 IBM Corporation

O

Conclusion

» ATHENA++ is the first system to handle nested BI queries.

» ATHENA++ is a step towards making NLIDB systems usable for real enterprise
BI applications.

» New benchmark designed for the BI queries and open-sourced at:
https://github.com/IBM/fiben-benchmark

VLDB 2020 / Aug 2020 / © 2020 IBM Corporation

10

Thank You

VLDB 2020 / Aug 2020 / ® 2020 IBM Corporation 11

