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Introduction

> Natural language querying for nested queries.

> Existing NLIDB systems do not focus on BI queries with nesting.
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Results ATHENA++ Results

> Aim is to democratize access to BI insights for business users.
» Without depending on SQL experts/analysts or the need to know the schema or SQL language.
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Nested Queries - Challenges
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Architecture
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Inside ATHENA++

Show me everyone who bought stocks
in 2019 that have gone up in value

|

everyone: [Person, Customer, Manager],
bought: [Transaction.type],
stocks: [ListedSecurity,]

value: [MonetaryAmount.value],
gone up:[ Operator (‘>’)], in 2019: [Time Comparison]

v
Nested Query Detected

¥ Outer Query Inner Query v
{everyone, bought, stocks, 2019, value} {stocks, 2019, value}
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Detection: Intuition and Examples

» Annotate tokens based on their semantic role
> Detect if query belongs to one of the 4 nesting types: A, N, J, JA.

Query Aggregation Correlation between Division
| Entity [ customer.stocks,etc. | T : :
Instance || IBM, California, ete. | Types Inner & Outer Queries | Predicate

‘ Time | since 2010, in 2019, from 2010 to 2019, etc.
Numeric | 16.8, sixty eight, etc.
| Measure || revenue, price, value, volume of trade, etc.
| count of, number of, how many, etc.
Aggregation | total/sum, max, min, average, etc.
more/less than, gone up, etc.
Comparison || equal, same, also, too, etc.
not equal, different, another, etc.
| Negation | no, not, none, nothing, etc.

» Show me the customers who are account managers.
between two separate entities => Type N

» Show me everyone who bought stocks in 2019 that have in value?
between a co-ref and measure => Type J

» Who bought Alphabet stocks with price his average buying price in 2019?
with an aggregation result having a co-ref => Type JA
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Subquery Formation: Intuition and Example

> Position of join token is treated as the boundary to initialize subquery tokens.
> We design heuristics on how to share tokens across outer and inner query.
» Heuristics depend on the annotations and nested type detected.

_I
I__-

Heuristic 1: co-referred entities to be shared.

Heuristic 2: time mentions are to be shared (if missing).

Heuristic 3: instance sharing when inner does not have aggregation.
Heuristic 4: focus sharing for non-numeric comparison queries.

Heuristic 5: comparison argument sharing across subqueries (if missing).

5|
e | v

» Show me everyone who bought stocks in 2019 that have

Heuristic 6: dependent entity/instance to be shared.

in value

> {everyone, bought, stocks, in 2019}, {value}
(Apply heuristics: Argument Sharing, Time Sharing, Dependent Entity Sharing)
> {everyone, bought, stocks, in 2019, value} <->{stocks, in 2019, value}
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Subquery Join: Intuition and Example

» Building individual subqueries with their respective tokens including shared tokens.

» Figuring out the right join condition between subqueries.
» Hierarchical query building by joining Outer and Inner subqueries.

Transaction.type MonetaryAmount.value
t
Example: “Show me ev%ryone who bought si[ocks that have gone up in value”
s, LUSIemEL, ListedSecurity Operator: >’
Account Manager

Outer: {everyone, bought, stocks, in 2019, value} | join Op: >’ | Inner: {stocks, in 2019, value}

Interpretation Tree (/Treey) Interpretation
Tree (ITree,)

> Steiner tree-based algorithm (ATHENA-PVLDB’16)
for each subquery formation

» Subquery joining depends on join types
e.g., '>'is a numeric comparator that can be applied on
the measure 'value'
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A New Benchmark: FIBEN

Schema

» Conforms to the combination of two standard finance ontologies: FIBO and FRO

» Contains information on

» Security transactions, insider history, financial metrics, industry info, etc.

» Emulates a real data mart in finance.

Queries

» 300 pairs of <NL,SQL> queries with 237 unique SQLs, 170 of them nested.
» Specifically focus on BI queries as obtained from BI experts.

» Covers enough examples of different types of nested queries.

» Open-sourced at: https://github.com/IBM/fiben-benchmark
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Results

Overall Accuracy % Nested Query Accuracy %

Data Set | ATHENA++ | ATHENA | NaLIR | | | Data Set | ATHENA++ | ATHENA | NaLIR |

MAS | 846l | 6103 | 408 |§[MAS | 7837 [ 1081 | 810 |
GEo | w25 | es20 | atoa |f[GE0 | 7857 | 1704 | 857 |

“Spider | 7882 | 5493 | - | [Spider | 7826 | 9093 | - |
“FIBEN | 8833 | 4800 | 2066 | [FBEN | 8588 | 1529 | 705 |

» ATHENA++ outperforms NALIR and ATHENA on all benchmarks.
» Only ATHENA++ achieves a decent accuracy for nested queries.
» Accuracy gap is significant in FIBEN which includes maximum # nested queries.
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Conclusion

» ATHENA++ is the first system to handle nested BI queries.

» ATHENA++ is a step towards making NLIDB systems usable for real enterprise
BI applications.

» New benchmark designed for the BI queries and open-sourced at:
https://github.com/IBM/fiben-benchmark
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Thank You
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