
ATHENA++: Natural Language Querying
for Complex Nested SQL Queries

VLDB 2020 / Aug, 2020 / © 2020 IBM Corporation 1

Jaydeep Sen1, Chuan Lei2, Abdul Quamar2, Fatma Özcan2, Vasilis Efthymiou2,Ayushi Dalmia1,
Greg Stager3, Ashish Mittal1, Diptikalyan Saha1,Karthik Sankaranarayanan1.

1IBM Research - India, 2IBM Research - Almaden, 3IBM Canada

Introduction

2

Problem:
Ø Natural language querying for nested queries.

Motivation:

Existing

AIM

Business Users Analysts/SQL Experts

ATHENA++

Backend Database

BI queries SQLs

SQLsBI queries

ResultsResults

Results Results

Ø Aim is to democratize access to BI insights for business users.
Ø Without depending on SQL experts/analysts or the need to know the schema or SQL language.

Ø Existing NLIDB systems do not focus on BI queries with nesting.

VLDB 2020 / Aug, 2020 / © 2020 IBM Corporation

3

Transaction

Account

ListedSecurity

MonetaryAmount

Person

date

value

Interpretation Tree (ITree1)

ListedSecurity

MonetaryAmount

value

Interpretation
Tree (ITree2)ITree1.

MonetaryAmount.
value
>

ITree2.
MonetaryAmount.

value

Person, Customer,
Account Manager

Transaction.type

ListedSecurity

Transaction.time

Operator: ‘>’

MonetaryAmount.value

Example: “Show me everyone who bought stocks in 2019 that have gone up in value”

• Nested Query Detection:
• How to detect nesting?

• Subquery Formation:
• How to divide the query into subqueries?

• Subquery Joining:
• How to join subquery results?

Outer query graph Inner query graph
Join condition

Nested Queries - Challenges

VLDB 2020 / Aug, 2020 / © 2020 IBM Corporation

Inside ATHENA++
question

Show me everyone who bought stocks
in 2019 that have gone up in value

everyone: [Person, Customer, Manager],
bought: [Transaction.type],
stocks: [ListedSecurity,]
value: [MonetaryAmount.value],
gone up:[Operator (‘>’)], in 2019: [Time Comparison]

Nested Query Detected

4

Token Annotations

Nested Query
Detector

Subquery
Formation

Interpretation Tree
Generator

Join Condition
Generator

Hierarchical Query
Building

{everyone, bought, stocks, 2019, value} {stocks, 2019, value}

Transaction

Account

ListedSecurity

MonetaryAmount

Person

date

value

Interpretation Tree (ITree1)

ListedSecurity

MonetaryAmount

value

Interpretation
Tree (ITree2)ITree1.

MonetaryAmount.
value
>

ITree2.
MonetaryAmount.

value

Output SQL Query

Architecture

VLDB 2020 / Aug, 2020 / © 2020 IBM Corporation

Outer Query Inner Query

Detection: Intuition and Examples

5

Ø Annotate tokens based on their semantic role

Ø Show me the customers who are also account managers.
Ø Equality Comparison between two separate entities => Type N

Ø Show me everyone who bought stocks in 2019 that have gone up in value?
Ø Numeric Comparison between a co-ref and measure => Type J

Ø Who bought Alphabet stocks with price more than his average buying price in 2019?
Ø Numeric Comparison with an aggregation result having a co-ref => Type JA

Ø Detect if query belongs to one of the 4 nesting types: A, N, J, JA.

VLDB 2020 / Aug 2020 / © 2020 IBM Corporation

Heuristic 1: co-referred entities to be shared.
Heuristic 2: time mentions are to be shared (if missing).
Heuristic 3: instance sharing when inner does not have aggregation.
Heuristic 4: focus sharing for non-numeric comparison queries.
Heuristic 5: comparison argument sharing across subqueries (if missing).
Heuristic 6: dependent entity/instance to be shared.

Subquery Formation: Intuition and Example

6

Ø Position of join token is treated as the boundary to initialize subquery tokens.
Ø We design heuristics on how to share tokens across outer and inner query.
Ø Heuristics depend on the annotations and nested type detected.

Ø Show me everyone who bought stocks in 2019 that have gone up in value
Ø {everyone, bought, stocks, in 2019} , {value}
(Apply heuristics: Argument Sharing, Time Sharing, Dependent Entity Sharing)
Ø {everyone, bought, stocks, in 2019, value} <-> {stocks, in 2019, value}

Join Token

VLDB 2020 / Aug 2020 / © 2020 IBM Corporation

Subquery Join: Intuition and Example

7

Ø Building individual subqueries with their respective tokens including shared tokens.
Ø Figuring out the right join condition between subqueries.
Ø Hierarchical query building by joining Outer and Inner subqueries.

Transaction

Account

ListedSecurity

MonetaryAmount

Person

date

value

Interpretation Tree (ITree1)

ListedSecurity

MonetaryAmount

value

Interpretation
Tree (ITree2)ITree1.

MonetaryAmount.
value
>

ITree2.
MonetaryAmount.

value

Person, Customer,
Account Manager

Transaction.type

ListedSecurity

Transaction.time

Operator: ‘>’

MonetaryAmount.value

Example: “Show me everyone who bought stocks in 2019 that have gone up in value”

Outer: {everyone, bought, stocks, in 2019, value} | join Op: ‘>’ | Inner: {stocks, in 2019, value}

Ø Steiner tree-based algorithm (ATHENA-PVLDB’16)
for each subquery formation

Ø Subquery joining depends on join types
e.g., '>' is a numeric comparator that can be applied on
the measure 'value'

VLDB 2020 / Aug 2020 / © 2020 IBM Corporation

A New Benchmark: FIBEN
Schema

Ø Conforms to the combination of two standard finance ontologies: FIBO and FRO

Ø Contains information on

Ø Security transactions, insider history, financial metrics, industry info, etc.

Ø Emulates a real data mart in finance.

8

Queries

Ø 300 pairs of <NL,SQL> queries with 237 unique SQLs, 170 of them nested.

Ø Specifically focus on BI queries as obtained from BI experts.

Ø Covers enough examples of different types of nested queries.

Ø Open-sourced at: https://github.com/IBM/fiben-benchmark

VLDB 2020 / Aug 2020 / © 2020 IBM Corporation

Results

9

Ø ATHENA++ outperforms NALIR and ATHENA on all benchmarks.
Ø Only ATHENA++ achieves a decent accuracy for nested queries.
Ø Accuracy gap is significant in FIBEN which includes maximum # nested queries.

Overall Accuracy % Nested Query Accuracy %

VLDB 2020 / Aug 2020 / © 2020 IBM Corporation

Conclusion

10

Ø ATHENA++ is the first system to handle nested BI queries.

Ø ATHENA++ is a step towards making NLIDB systems usable for real enterprise
BI applications.

Ø New benchmark designed for the BI queries and open-sourced at:
https://github.com/IBM/fiben-benchmark

VLDB 2020 / Aug 2020 / © 2020 IBM Corporation

Thank You

11VLDB 2020 / Aug 2020 / © 2020 IBM Corporation

