MUSE: Multi-query Event Trend Aggregation

Allison Rozet¹, Olga Poppe², Chuan Lei³, and Elke A. Rundensteiner¹

1. Worcester Polytechnic Institute
2. Microsoft Gray Systems Lab
3. IBM Research - Almaden

ACM International Conference on Information and Knowledge Management
October 2020
Complex Event Processing

Input: High-rate, potentially unbounded event stream

Output: Reliable summarized insights about the current situation in real time

Introduction

MUSE

Evaluation
Objective: Near Instantaneous Responsiveness

Expensive Event Trend Aggregation Queries

High Volume, High Velocity Event Stream

Our goal is to identify, analyze, and exploit sharing opportunities in order to optimize workload processing.
Query q1:
RETURN COUNT(*)
PATTERN B+

Stream:
b1, b2, b3

Trends:
b1
b1, b2
b1, b2, b3
b1, b3
b2
b2, b3
b3

A trend is an arbitrarily long sequence of events that matches the query.

COUNT(*) returns the number of trends.

A two-step approach constructs all matches prior to aggregation.

Exponential complexity.

Final count: 7
Online Aggregation

Query q1:
RETURN COUNT(*)
PATTERN B+

Stream:
b1, b2, b3

<table>
<thead>
<tr>
<th>Event</th>
<th>bi.count</th>
</tr>
</thead>
<tbody>
<tr>
<td>b1</td>
<td>1</td>
</tr>
<tr>
<td>b2</td>
<td>2</td>
</tr>
<tr>
<td>b3</td>
<td>4</td>
</tr>
</tbody>
</table>

Final count: 7

An online approach maintains aggregates incrementally.

bi.count is the number of partial trends that end at event bi.

For example, b3.count tells us that there are 4 partial trends that end at b3. They are (b1,b2,b3), (b1,b3), (b2,b3), and (b3).

Quadratic complexity.
Multi-query Online Aggregation

Query q1:
RETURN COUNT(*)
PATTERN B+

Stream:
b1, a1, b2, b3

<table>
<thead>
<tr>
<th>Event</th>
<th>bi.count</th>
</tr>
</thead>
<tbody>
<tr>
<td>b1</td>
<td>1</td>
</tr>
<tr>
<td>b2</td>
<td>2</td>
</tr>
<tr>
<td>b3</td>
<td>4</td>
</tr>
</tbody>
</table>

Final count: 7

We have an identical sub-pattern...

Query q2:
RETURN COUNT(*)
PATTERN SEQ(A,B+)

Stream:
b1, a1, b2, b3

<table>
<thead>
<tr>
<th>Event</th>
<th>ai.count</th>
<th>bi.count</th>
</tr>
</thead>
<tbody>
<tr>
<td>a1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>b2</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>b3</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Final count: 3

...but the numbers are not the same. How could anything possibly be shared here?
Challenges

Sharing diverse nested Kleene patterns:

\[\text{SEQ}(P, T^+, D) \]
\[\text{SEQ}(\text{SEQ}(P, T^+)^+, D) \]

Shared computation without trend construction:

Sharing requires trend construction \(\Rightarrow\) Online skips trend construction

Optimizing the Kleene sharing plan:

Exponentially large search space
Muse Executor

Introduction

MUSE Evaluation

Non-shared execution
- \(q_1 = B+ \)
- \(q_2 = SEQ(A, B+) \)
- \(q_3 = SEQ(A, B+) + \)

Execution sharing
- \(B+ \)
- *MatPoint* (materialization point) is B.
- *MatState* (materialized state) stores each query’s intermediate trend aggregate.

\[a \text{ MatPoint} \]

\[a \text{ MatState} \]

\[*Muse = Multi-query shared event trend aggregation \]
If Benefit(<E’,E>, Q) > 0, we say it is beneficial to share.

Lemma 3.2. The more queries that share a sub-pattern, the more beneficial it becomes.

Lemma 3.3. Reducing the number of MatStates increases the sharing benefit.
Muse Optimizer

- Begin with a global sharing plan
- Prune plans in the search space using Lemmas 3.2 and 3.3
- Optimizer follows a modified topological sort algorithm
Experimental Setup

Data Sets:

• NASDAQ Stock Market Real Data Set
 – Transactions for over 3200 companies for one month
 – Stock ticker symbol, time stamp, price, volume

• Ridesharing Synthetic Data Set
 – Controls the rate of event types in the stream
 – 50 event types and 20 districts

Experimental Results

- Muse has a throughput gain of 3 orders of magnitude over Sharon at 15k events per window (left: ridesharing)
- Muse outperforms MCEP by 4 orders of magnitude at 25k events
- Muse achieves 14-fold increase in throughput over GRETA on a higher-rate event stream (right: stock)
Experimental Results

- Muse achieves from 7-fold to 25-fold throughput gain over GRETA when the number of queries increases from 50 to 300 (left: stock).
- For streams with very few MatStates, Muse sees nearly 7-fold increase in throughput compared to GRETA (right: ridesharing).
Conclusions

- Muse defines *shared* aggregation of event trends matched by *diverse nested Kleene* pattern queries over high speed streaming data in *real-time*
- Several orders of magnitude performance improvement over state-of-the-art