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ABSTRACT

Recent advances in natural language understanding and
processing have resulted in renewed interest in natural lan-
guage interfaces to data, which provide an easy mechanism
for non-technical users to access and query the data. While
early systems evolved from keyword search and focused on
simple factual queries, the complexity of both the input
sentences as well as the generated SQL queries has evolved
over time. More recently, there has also been a lot of focus
on using conversational interfaces for data analytics, empow-
ering a line of business owners and non-technical users with
quick insights into the data. There are three main challenges
in natural language querying: (1) identifying the entities
involved in the user utterance, (2) connecting the differ-
ent entities in a meaningful way over the underlying data
source to interpret user intents, and finally (3) generating a
structured query in the form of SQL or SPARQL.

There are two main approaches in the literature for inter-
preting a user’s natural language query. Rule-based systems
make use of semantic indices, ontologies, and knowledge
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graphs to identify the entities in the query, understand the
intended relationships between those entities, and utilize
grammars to generate the target queries. With the advances
in deep learning-based language models, there have been
many text-to-SQL approaches that try to interpret the query
holistically using deep learning models. Hybrid approaches
that utilize both rule-based techniques as well as deep learn-
ing models are also emerging by combining the strengths of
both approaches. Conversational interfaces are the next nat-
ural step to one-shot natural language querying by exploiting
query context between multiple turns of conversation for dis-
ambiguation. In this monograph, we review the background
technologies that are used in natural language interfaces,
and survey the different approaches to natural language
querying. We also describe conversational interfaces for data
analytics and discuss several benchmarks used for natural
language querying research and evaluation.



1
Introduction

Natural language interfaces provide an easy way to query and interact
with data, and enable non-technical users to investigate the data sets
without the need for knowing a query language like SQL. As a result,
natural language interfaces have been an active area of research for
many decades. With the advances in natural language processing (NLP)
technologies, and language models like BERT (Devlin et al., 2019), there
is renewed research interest. Even limited forms of such interfaces are
now becoming available in commercial products (Ask Data | Tableau
Software 2021; Power BI Platform 2021; Cognos Assistant 2021).

Many business users and line of business owners rely on technical
people to query and gain insights from their data. These technical people
are experts on using complex query languages such as SQL or SPARQL.
Today, it is vital for non-technical uses to derive insights from their data
as quickly as possible to make effective business decisions. Most often
business owners do not have direct access to the data, instead relying on
application interfaces with pre-defined queries or dashboards to access
and examine the data. Usually, technical users close the gap by creating
the dashboards and the canned queries needed, but this introduces
delays. Today, there is an increasing need for rapid data access and
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insights as well as quick exploration of data as soon as it lands in the
database. Natural language interfaces provide this functionality, giving
rise to the augmented consumer (Richardson et al., 2021). Gartner
predicts that the future analytics experiences will be consumer-focused,
augmented in context as well as conversational.

Natural language interfaces include natural language query (NLQ)
systems, as well as dialogue (or conversational) systems. NLQ systems
interpret a single user utterance and produce a SQL or SPARQL query.
In other words, NLQ systems offer one-shot query answering, with-
out any context between subsequent queries, whereas conversational
systems allow multiple turns in question answering, while preserving
some context between turns. This additional context information allows
further disambiguation in interpretation.

There are several challenges in building natural language interfaces
to data (Affolter et al., 2019). Ambiguity in natural language is a big
challenge, making it difficult to understand the semantics of the query
and hence the user intent. Understanding the complex relationships
between the entities in the user statement and generating a complex
SQL query are also challenging. General purpose solutions that can be
adapted quickly to any domain are difficult to build. Figure 1.1 shows
the three important tasks that are involved in natural language querying
of data. The first task in NLQ is semantic parsing and entity tagging,
which identifies the entities involved in the user query. Identifying the
relationships between these entities, associating them with the data
elements in the database, and finally interpreting the user intent based
on these entities and relationships is the most critical and challenging
task in NLQ. There may be many interpretations that are valid and
choosing the right one is also non-trivial. Finally, the last task in NLQ is
generating the SQL query that corresponds to the chosen interpretation.

There are two main approaches to NLQ: rule-based and ML/DL-
based techniques. Some systems (Saha et al., 2016; Lei et al., 2018; Sen
et al., 2019; Li and Jagadish, 2014b; Li and Jagadish, 2014a; Li and
Jagadish, 2016; Blunschi et al., 2012; Song et al., 2015) use semantic
indexes or ontologies to identify the entities in the query, and employ
rule-based or grammar-based techniques for query interpretation and
SQL generation. Machine learning (ML) and deep learning (DL) based
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Figure 1.1: Tasks in natural language querying.

text-to-SQL techniques (Basik et al., 2018; Weir and Utama, 2019;
Zhong et al., 2017; Xu et al., 2017; Yu et al., 2018a; Gur et al., 2018;
Zhang et al., 2019), which encode user inputs into a feature embedding
and train deep learning models to generate the SQL query in a holistic
way, are widely used, and have become more popular recently. While
rule-based approaches provide easier domain adaptation, text-to-SQL
systems are more robust to paraphrasing of the input query. There are
also some emerging hybrid solutions that mix rule-based and ML/DL-
based techniques for different NLQ tasks. For example, Usta et al. (2021)
provide a DL-based technique for entity tagging that can be plugged in
any rule-based solution.

Natural language interfaces have been an area of active research in
various communities for many years (Özcan et al., 2020; Li and Rafiei,
2017; Affolter et al., 2019; Katsogiannis-Meimarakis and Koutrika,
2021b; Gkini et al., 2021). Figure 1.2 shows a historical timeline for many
NLQ and conversational solutions. In particular, the search and NLP
communities have worked on natural language interfaces by extending
keyword search into templates and sentences. Many question answering
systems are in this group. A question answering system allows the
user to ask questions in natural language and to obtain direct answers
that correspond to facts stored in the database. It can be considered
as an enhancement to search systems. Instead of a simple keyword
search over the data, question answering systems can provide more
meaningful and insightful information in the form of short answers to
the user’s natural language questions. Similar to keyword search, the
goal in these use cases is to find information about certain entities, such
as the CEO of a company or the director of a movie. In these systems,
the final structured query that gets generated is a simple lookup query.
Examples include early systems (Aditya et al., 2002; Tata and Lohman,
2008) that only allow a set of keywords, with very limited expressive
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Figure 1.2: Historical perspective.

power, as well as systems (Blunschi et al., 2012; Zenz et al., 2009) that
mostly focus on simple queries that access a single table using some
selection criteria. Later works allow a full-blown English statement and
try to disambiguate among the multiple meanings of the words and
their relationships. There has been also work on building conversational
systems (Yu et al., 2019a; Quamar et al., 2020a) that allow advanced
search on well-curated databases.

The database community has focused on natural language interfaces
for analytical queries, as such interfaces enable business users and
analytics teams to quickly analyze the data, and understand reasons and
key drivers for business behaviors. As predicted by Gartner (Richardson
et al., 2021), to become more widely used than pre-defined dashboards,
these systems require complex SQL queries that are typical in analytical
systems. With the recent advances in NLP (Young et al., 2018), both
the complexity of input natural language statements, as well as the
generated SQL and SPARQL queries have increased over time. A lot of
these systems (Li et al., 2005; Saha et al., 2016; Sen et al., 2020; Basik
et al., 2018) have originated in the database research community and
can generate complex SQL queries with many joins and aggregations,
as well as nesting.
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In this monograph, we first review the background technologies
empowering the existing natural language interfaces to data in Section
2. Then, in Section 3, we discuss many rule-based and text-to-SQL
systems, as well as hybrid solutions to natural language querying. We
also describe how to extend the one-shot query approaches to dialogue,
taking advantage of the context for disambiguation, in Section 4. In
Section 5, we recount various benchmarks designed for evaluating natural
language interfaces to data. Finally, we conclude with a discussion on
challenges that need to be addressed before these systems can be widely
adopted in Section 6.



2
Background

2.1 Data Modeling: Ontologies, Taxonomies, Knowledge Graphs

The rapid developments towards the Semantic Web vision in the past
two decades have significantly impacted a plethora of fields in computer
science, especially those targeting a deeper understanding and processing
of data. Natural language interfaces to data could benefit from such
developments. Having a formal semantic definition of the underlying
data and making the data machine-readable and understandable were
the two key factors towards providing a better understanding and a
greater potential of answering user queries, expressed not only in a
structured query language (e.g., SQL, SPARQL, Cypher), but also in
natural language.

The key notion behind the Semantic Web is that of an ontology,
which is typically based on the fragments of first-order logic called
Description Logics (Baader et al., 2017). An ontology is a formal con-
ceptualization of a domain in terms of classes, representing entities,
and properties, representing features of those entities, including their
relationships to other entities. A typical example of an ontology is one
that includes the classes ‘Person’, ‘Professor’, ‘Student’, ‘Course’, and
the relationships ‘teaches’, associating a ‘Professor’ to a ‘Course’, and
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Figure 2.1: An ontology example.

‘enrolls’, associating a ‘Student’ to a ‘Course’ (Figure 2.1). Ontologies
also contain subsumption (aka is-a) relations between classes (and even
properties), e.g., every ‘Professor’ is-a ‘Person’. In fact, ontologies that
contain only subsumption relations are also referred to in the literature
as taxonomies. Similar to database integrity constraints, ontologies may
also contain some restrictions, such as domain and range restrictions for
relationships (e.g., the domain of teaches is the class ‘Professor’, and its
range is ‘Course’), and functionality assertions (e.g., if the relationship
‘teaches’ is functional, this means that a Professor cannot teach more
than one Course).

By providing an ontology for the domain of a dataset, a computer
system knows not only how to present the data, but also what the data
is about (i.e., the meta-data), as well as how to process and even infer
new information that is not explicitly stated in a given dataset (Özcan
et al., 2021). A typical inference example for the ontology of Figure 2.1
is that if Tom is an instance of a ‘Professor’, then we can infer that Tom
is also a ‘Person’, even if this fact is not explicitly stated in the data.
Those modeling and inference capabilities offered by ontologies have
provided a great potential for rule-based natural language interfaces to
data to bring new query answering capabilities, by associating chunks
of natural language questions with formally defined ontological classes
and properties.

A graph-structured representation of the meta-data (as provided by
an ontology), as well as the data (aka facts) is commonly referred to as
a knowledge graph. In this work, we will abstractly refer to knowledge
graphs, regardless of the underlying data storage technology, which may
be a relational database, an RDF triple store, or a graph database.
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2.2 Language Models

Language models have a rich history of association with NLP (Qiu et al.,
2020). In this section, we provide a brief description of the evolution of
language models and describe their usage and application for building
natural language interfaces to data.

One of the earliest language models was to model a document as
a bag of words for downstream classification tasks. TF-IDF (Term
Frequency-Inverse Document Frequency) was used to normalize these
word counts, enabling the scoring of words in ML algorithms for NLP
tasks. TF-IDF allows the score to reflect the frequency of occurrence
of a word, while offsetting it by the number of documents that contain
the word, resulting in higher accuracy than the bag of words approach.
This approach however does not capture the context of a word in a
document with respect to its relationships with other words.

Word embeddings overcome this limitation by capturing the struc-
ture and relationships of words with respect to other words. Word2Vec
(Mikolov et al., 2013) is one of the most popular implementations of
such a model that produces a vector representation (embedding) of a
word, using shallow architectures, such as continuous bags of words and
skip-gram models. These models learn embeddings using pairwise rank-
ing, utilizing nearby words from the same sentence. They are pre-trained
using a large corpus of textual data. Then, they are used to generate a
latent vector representation of words such that the vectors of two seman-
tically similar words are placed close together in a multi-dimensional
latent space and vice-versa. GloVe (Pennington et al., 2014) is another
widely used model for obtaining pre-trained word embeddings based
on a global word-word co-occurrence matrix constructed from a large
corpus of textual data. The model is a count-based method that cap-
tures the proximity of words in terms of the ratio of their co-occurrence
probabilities. These approaches generate word embeddings as vector
representations in an unsupervised setting by using the raw corpus of
textual data without any labels. These models can be used by down-
stream NLP classification tasks. However, they are context-independent,
i.e., the embedding of a word is always the same irrespective of the
context in which it is used. Also, these models are unable to handle
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out-of-vocabulary words, i.e., words that did not appear in the training
data.

To distinguish the semantics of a word in the different contexts that it
is used, what is needed is contextual embeddings. Models for generating
contextual embeddings pre-train neural networks at the sentence and
paragraph level. ELMo (Embeddings from Language Models) (Peters
et al., 2018) is a contextual embedding model that uses a 2-layer Long
Short-Term Memory (LSTM) encoder with a bidirectional language
model that takes into account the order of words before and after a
particular word in both directions. ELMo embeddings have been shown
to yield large improvements in a broad range of NLP tasks that require
capturing word semantics based on their context and can also handle
out-of-vocabulary words. Pre-trained language models such as ELMo
can also be fine-tuned for downstream tasks (e.g., text classification)
on different datasets, and have been shown to produce state-of-the-art
results.

Transformers (Vaswani et al., 2017) provide another way to capture
long dependencies at the sentence and paragraph level. Transformers
are based on an encoder-decoder architecture and use a bidirectional
self-attention mechanism to encode the context of a given word with
respect to the sentence in which it is used. They have been shown to
capture long-term dependencies better than LSTM-based models.

BERT (Bidirectional Encoder Representation from Transformer)
(Devlin et al., 2019) is a transformer-based pre-trained language model
that uses the encoder block of the transformer architecture and has
shown to be very effective in learning universal language representations.
The input to BERT is a sequence of token embeddings. The encoder
consists of several stacks of bidirectional transformer encoder layers,
and the output is a set of contextualized embeddings. BERT pre-trains
deep bidirectional representations on a large corpus of data, such as
Wikipedia (2.5B words) or BooksCorpus (800M words), while paying
attention to context in both directions, in all layers.

Pre-training a BERT model can be done in two ways. First, a masked
language model (Taylor, 1953) is used to randomly mask some of the
tokens in the input with the goal of predicting the masked word based
on its context (e.g., using “The capital of France is [MASK].” to predict
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“Paris”). The masked language model allows fusing the context in
both directions, hence enabling the pre-training of a deep bidirectional
transformer. Second, next-sentence prediction can be used to learn
the dependencies between different sentences. Given two sentences S1
(“Home price growth is rapid”) and S2 (“It is really hard to buy a
home in the Bay Area”) as input, BERT is trained to predict if S2
logically follows S1, thereby learning the longer-term dependencies
between sentences.

A pre-trained BERT model can be fine-tuned using additional layers
and training to produce effective models shown to perform well for
different downstream tasks. Each downstream task requires providing
the task’s input in the form of appropriate features to BERT and using
BERT’s output to make a prediction decision for the task. BERT has
been shown to do well for several NLP tasks, such as semantic tagging
and question answering. It has been also widely used in several text-to-
SQL systems, such as HydraNet (Lyu et al., 2020) and SQLova (Hwang
et al., 2019), which will be covered in detail in Section 3.2.

Since the widespread use of BERT, there have been many other
variants, such as ALBERTA (Lan et al., 2019), RoBERTa (Liu et al.,
2019), TinyBERT (Jiao et al., 2020), DistilBERT (Sanh et al., 2019),
and SpanBERT (Joshi et al., 2019), targeting different downstream
applications. Since most language models are pre-trained on domain-
agnostic corpora, their applicability to certain domain-specific tasks is
limited. Language models pre-trained on domain-specific corpora have
also been proposed recently, including BioBERT (Lee et al., 2019) for
biomedical text, SciBERT (Beltagy et al., 2019) for scientific text, and
FinBERT (Araci, 2019) for financial text.

Fine-tuning language models has now become a popular approach
for adapting the pre-trained language models for several different down-
stream tasks. For example, ULMFit (Universal Language Model Fine-
Tuning) (Howard and Ruder, 2018) particularly attempts to fine-tune
models for text classification in two steps, namely (1) fine-tuning pre-
trained language models on domain-specific or target data with the
goal of domain adaptation, and (2) further fine-tuning language mod-
els for specific downstream tasks using techniques like discriminative
fine-tuning. Discriminative fine-tuning uses different learning rates for



2.2. Language Models 331

different layers. This approach allows for partially retaining previous
knowledge learnt from the initial training while adaptively learning new
knowledge from the fine-tuning. This adaptive approach has been shown
to work well empirically on different datasets for text classification.

A step further in fine-tuning language models is OpenAI GPT
(Generative Pre-Training) (Radford and Narasimhan, 2018), which has
demonstrated that a large number of NLP and NLU (natural language
understanding) tasks, e.g., question answering and semantic similarity
assessment, can benefit from generative pre-training of language models.
GPT uses a 12-layer decoder block of the transformer architecture,
wherein the language model is first pre-trained on a diverse corpus
of unlabelled text. This is followed by discriminative fine-tuning on
specific downstream tasks. Unlike other approaches discussed above,
GPT affects transfer learning using task-aware input transformations
during the fine-tuning stage, while the model itself is general and task-
agnostic. GPT has been shown to perform well especially on question
answering tasks such as RACE (Lai et al., 2017), a benchmark dataset
for reading comprehension tasks. GPT-2 (Radford et al., 2019) further
improves upon GPT and adds a normalization layer to the input of each
sub self-attention block, as well as an additional layer of normalization
after the final self-attention block. It was primarily designed as an
auto-regressive language model for predicting the next word, given a
sequence of prior words in a text. GPT-2 can have 24, 36 or 48 layers in
the decoder block and has been trained on the WebText corpus, created
by scraping web pages with emphasis on document quality.

Fine-tuning of language models, although being extensively used,
still requires a substantial amount of task-specific or domain-specific
labelled examples to achieve the desired goal. Scaling up language
models can alleviate this issue by reducing the need for fine-tuning.
The GPT-3 language model (Brown et al., 2020) demonstrates this by
obviating the need for any fine-tuning or gradient updates. GPT-3 has
been shown to achieve good performance on several NLP tasks, such as
question answering and translation, as well as tasks that require some
reasoning or domain adaption, such as using new words in a sentence
and handling arithmetic tasks. GPT-3 is characterized by its large
model size (175 billion parameters) and has been tested in the few-shot
setting, i.e., making predictions based on a limited number of samples.
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Recently, newer language models such as Transformer-XL (Dai et al.,
2019) and XLNet (Yang et al., 2019) have been proposed to overcome
some of the limitations of transformer-based language models, such as
fixed-length context, context fragmentation, and neglecting dependency
between masked positions. Transformer-XL enables learning beyond a
fixed-length context by reusing hidden states from previous segments to
build a recurrent connection between segments. XLNet, a generalized
auto-regressive pre-training method, overcomes the limitations of BERT
by enabling learning of bidirectional contexts through maximizing the
expected likelihood over all permutations of the factorization order.

Current language models are pre-trained on free-form text corpora
and hence are limited in their ability to represent the two-way structure
or multi-turn dynamics of a dialogue or conversation. Conversational
semantic parsing tasks require the translation of a sequence of natural
language queries to structured queries, such as SQL or SPARQL. SCoRe
(Yu et al., 2021) addresses the limitations of the current language
models for conversational semantic parsing tasks by adapting pre-trained
language models using a second phase of pre-training that captures both
the multi-turn dynamics, as well as the structural contexts in a dialogue.
LaMDA (Language Models for Dialogue Applications) (Google, 2021c)
is a transformer-based language model trained on dialogues based on
the fact that words in a dialogue across multiple statements are related
and together they are sensible.

Other language models that have been used for tasks such as dia-
logue response generation include DialoGPT (Zhang et al., 2020a) and
ConveRT (Henderson et al., 2020). DialoGPT is a dialogue Generative
Pre-Trained Transformer trained on conversational data from Reddit
and has been shown to generate relevant and context-sensitive responses
to user queries in a conversational setting. ConveRT (Conversational
Representations from Transformers) is a pre-training framework for
response generation suitable for conversational settings, owing to its
reduced model size and faster training time as compared to standard
sentence encoders.

For more details on pre-trained language models for natural language
processing, we refer the reader to (Qiu et al., 2020). Next, we will
describe how language models have been extensively used for NLP
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tasks relevant to natural language interfaces to data, such as semantic
tagging, named entity recognition, natural language generation, and
conversational systems.

2.3 Semantic Tagging and Named Entity Recognition

Semantic tagging, which has extensive applications in text mining,
predicts whether a given piece of text conveys the meaning of a given
semantic tag (Abzianidze and Bos, 2017). Named entity recognition
(NER) relies on tagging words or phrases with semantically informative
tags (e.g., person, location, organization, time) in text. In natural
language interfaces to data, semantic tagging/NER is heavily used by
both traditional rule-based and recent ML-based approaches. The goal
of semantic tagging/NER in these systems is to annotate tokens in a
text with the corresponding semantic information from the data.

There are two types of methods for semantic tagging/NER: rule
programming (Li et al., 2020) and machine learning (Bjerva et al.,
2016). Early systems (Sekine and Nobata, 2004; Negi and Buitelaar,
2015) require domain experts to handcraft rules and extract features
for semantic tagging. These rules and features are often based on pre-
defined dictionaries as well as the word- or document-level characteristics
from the corpus. Such rule-based methodology is often error-prone and
requires significant programming effort.

In contrast, modern semantic tagging/NER solutions (Kim et al.,
2016; Santos and Guimarães, 2015; Huang et al., 2015; Shao et al., 2016;
Zhang et al., 2020b) do not require much programming effort as they
most often resort to machine learning techniques, deep learning models
in particular. The primary reason is that they are often more capable
of learning complicated functions than other kinds of models. Some
prevalent deep models are based on convolution neural networks (Kim,
2014), LSTM (Hochreiter and Schmidhuber, 1997), and BERT (Devlin
et al., 2019).

Convolutional Neural Networks (CNNs)(Albawi et al., 2017) tokenize
a text into unigram words and each word is represented with a pre-
trained k-dimensional vector. A semantic tagging/NER model (Kim
et al., 2016) often uses highway networks over CNNs on character
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sequences of words and then uses another layer of softmax for the final
predictions. Similarly, a deep learning model (Santos and Guimarães,
2015) is designed with a CNN over the characters of words, concatenated
with word embeddings of the central word and its neighbors, fed to a
feed-forward network, and followed by the Viterbi algorithm (Forney,
1973) to predict labels for each word.

LSTMs(Sherstinsky, 2020), based on Recurrent Neural Networks
(RNNs), use the same input representation as CNNs, i.e., a matrix of
word vectors. However, unlike CNNs, LSTMs sequentially (left to right)
process the text over time and keep their hidden state through time.
The hidden state can capture any meaningful features that appeared in
the prefix of the text up to the current timestamp. This enables LSTMs
to capture arbitrary long-term dependencies. With slight variations,
bidirectional LSTM (bi-LSTM) and window bi-LSTM can be used to
improve the performance (Huang et al., 2015). Adding features, such as
conditional random fields, parts-of-speech tagging, and case information,
has also been shown to improve performance (Shao et al., 2016).

As described in Section 2.2, BERT also uses a matrix of word
vectors to represent a text, which is similar to CNN and LSTM. BERT
applies attentions to represent a text with weighted word vectors, such
that relevant tokens have higher weights than irrelevant ones. It has
been shown that models using BERT as token-level embeddings for
semantic tagging (Figure 2.2) are effective and robust over a variety
of datasets (He and Choi, 2019). Similarly, SemBERT (Zhang et al.,
2020b) introduces an improved language representation model based on
BERT, which absorbs contextual semantics from BERT and fine-tunes
it without substantial task-specific modifications.

2.4 Natural Language Generation

Natural Language Generation (NLG) is the generation of human-
readable text from a non-linguistic representation of information (Gatt
and Krahmer, 2018). Non-linguistic inputs often include a variety of
sources, such as semantic representations of information in different for-
mats (e.g., JSON, OWL), data tuples coming from a relational database,
information from structured knowledge graphs, data visualizations etc.
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Figure 2.2: Semantic tagging using BERT.

More specifically, in the context of natural language interfaces to data,
NLG is required to provide a human-readable text response that is
typically accompanied with the results to a user query against the
data. This human-readable text provides a summarized explanation
of the accompanying results. For example, in response to a user query
“Show me the sales by region for 2020”, a natural language response
accompanying the results could be: “Here are the sales by region for
the year 2020”. Techniques for NLG could be applied to both one-shot
query answering systems as well as multi-turn conversational systems
for data exploration.

A typical NLG task can be broken down into several components
(Reiter and Dale, 1997; Reiter and Dale, 2000), which broadly determine
the information content (what needs to be conveyed) and linguistic
articulation (how to convey). These are (1) content determination to
ascertain different pieces of information that need to be included in the
generated text, (2) text structuring to determine the order of different
pieces of information together, (3) sentence aggregation to determine
which pieces of information would go in which individual sentences,
(4) lexicalization to find the right words, phrases to express different
pieces of information, (5) referring expression generation to determine
words and phrases to represent entities or domain objects, and finally
(6) linguistic realization to combine all constituent words and phrases
into coherent text/sentences.

There are several different NLG architectures and approaches that
have been used in the recent past to accomplish the aforementioned
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NLG tasks. These range from (1) modular architectures (Reiter and
Dale, 2000; Banaee et al., 2013), which divide each of the sub tasks
mentioned above into well-defined sub-modules and then stitch them
together in the right order, (2) planning perspectives (Rieser and Lemon,
2016; Dethlefs, 2014; Garoufi, 2014), which view the process of NLG as
a planning task allowing for a more integrated approach as compared to
a modular architecture, and (3) integrated or global approaches, which
form the most pre-dominant NLG technique that rely on statistical
learning (Mairesse and Young, 2014) of the mapping or correspondences
between the non-linguistic inputs to the text output of NLG often
taking a holistic or global view of the NLG process. Each of these
different architectures can potentially incorporate a wide variety of
knowledge-based (symbolic) methods or data-driven stochastic methods
to accomplish the different sub-tasks for NLG (Gatt and Krahmer,
2018). In this monograph, we focus on deep learning methods, encoder-
decoder architectures and conditioned language models as the dominant
stochastic methods used by the integrated approaches to NLG for
building natural language interfaces to data.

Deep neural network architectures are well suited for sequence-
to-sequence (Seq2Seq) translation and hence can be used for NLG
tasks such as generating texts from abstract representations of infor-
mation, a typical NLG requirement for natural language interfaces
to data. Encoder-decoder architectures allow encoding the input se-
quence into vector representations which can then be decoded to support
Seq2Seq tasks such as machine translation wherein a variable-length
input sequence can be translated to a variable-length output sequence
(Bahdanau et al., 2015). Castro Ferreira et al. (2017) adapt the encoder-
decoder architecture for Seq2Seq models to generate texts from Abstract
Meaning Representations. Attention-based mechanisms further improve
machine translation tasks by allowing the model to learn different
weights for different parts of an input encoding, while decoding for
different parts of an output (Bahdanau et al., 2015). Such attention
mechanisms thus allow a data-driven approach to learn correspondences
between different parts of the abstract representations of information,
such as a SQL query to different parts of natural language sentences.
The attention mechanisms eliminate the need for a direct alignment
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between the input and output reducing the chances of error and making
the translation more robust. This is particularly relevant for response
generation for natural language interfaces to data.

Another way of generating natural language responses is to use a
conditioned language model wherein the response is generated by sub-
selecting portions of the input from a distribution conditioned on the
input features. These features could be chosen based on the semantic,
contextual or linguistic information content associated with them and
the model jointly optimizes for multiple NLG tasks such as content
selection and linguistic realization. Application of these conditioned
models allows for generation of natural language text such as biography
sentences from Wikipedia tables or infoboxes (Lebret et al., 2016). The
ability of conditioned language models to selectively incorporate specific
contexts (both categorical and quantifiable or continuous attributes) to
generate a summarizing text (Herzig et al., 2017; Asghar et al., 2017)
from data originating from tables makes them attractive for generating
natural language responses accompanying structured results for natural
language interfaces such as Q&A and conversational systems. Wiseman
et al. (2021) propose another approach for data-to-text generation using
a combination of retrieval and generative methods. Candidate text(s)
from a database are extracted based on a user query. The retrieved
text(s) and the query are then combined in an utterance generator
model to create a natural language response. A splicing technique is
proposed to improve interpretability and provenance tracking. Such
approach makes it clear which pieces of text are derived from which
pieces of information from the database and how different pieces of text
are stitched together to form a natural language response.

Extending NLG for response generation in conversational interfaces
to data requires capturing context over multiple turns of conversation.
This context is used as input for the encoder, while the decoder is
used to generate the next dialogue response in natural language. Wen
et al. (2015) propose an NLG technique for generating the next di-
alogue response using a semantically conditioned LSTM that learns
from unaligned data by jointly optimizing sentence planning and sur-
face realization. Several Seq2Seq models with attention mechanisms
have also been used for generating the next response in conversational
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systems (Dusek and Jurcicek, 2016). As mentioned in Section 2.2, lan-
guage models such as DialoGPT (Zhang et al., 2020a) and ConveRT
(Henderson et al., 2020) have also been used for response generation in
conversational systems.

For more details on NLG techniques and systems, we refer readers
to Gatt and Krahmer (2018) and Santhanam and Shaikh (2019), which
provide more in-depth descriptions and analysis of NLG techniques
relevant to a variety of different systems including question-answering
and dialogue systems.

2.5 Conversational Systems

Conversational systems are becoming increasingly popular as the pre-
ferred natural language interface to data exploration and analysis. These
systems enable interaction with the framework through a dialogue, using
multi-modal inputs including text, audio and gestures like touch or
point. The ability of conversational systems to persist context across
multiple turns of the dialogue allows users to interact and conduct a
conversation with the frameworks, making them much more useful than
one-shot query answering systems. Hussain et al. (2019) provide an
in-depth survey on the history and evolution of conversational systems
and their design techniques.

The prolific growth of conversational systems in different applica-
tion domains has led to the development of a variety of conversational
systems (or chatbots) to address different use cases. These systems can
be broadly classified using two different criteria (Figure 2.3). (1) Based
on the task (end goal) or user application: task-oriented and non-task-
oriented chatbots. Task-oriented chatbots are useful for accomplishing
specific tasks, such as making a travel reservation, executing a bank-
ing transaction, etc. Non-task-oriented chatbots are general-purpose,
mostly used as information retrieval systems not tied to any particular
task. (2) Based on the domain of data and knowledge: open-domain
or domain-specific chatbots. As the name suggests, open-domain chat-
bots are not tied to any particular domain. These open-domain agents,
such as Microsoft’s Cortana (Microsoft, 2018), Apple’s Siri (Apple,
2018), Google Assistant (Google, 2021b) and Amazon’s Alexa (Amazon,
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Figure 2.3: Classification of conversational systems.

2018), are useful for accomplishing simple day-to-day tasks, such as
checking weather forecasts, playing music, setting device timers, and
general-purpose information retrieval. Open-domain chatbots are typ-
ically designed with a general-purpose front-end, which receives user
input and, depending on the type of question asked, hands it to one of
several backend services designed to handle the specific question. On
the other hand, domain-specific chatbots are designed with a specific
domain (e.g., finance, healthcare, transportation, insurance) in mind
and hence, are more useful for in-depth conversational interactions for
these application domains. A more detailed classification for conversa-
tional systems can be found at (Hussain et al., 2019). Conversational
interfaces to data that allow users to explore and analyze data using
natural language over multiple turns of conversation often fall under this
categorization depending on the kind of data being analyzed/explored.

Building conversational systems for different use cases and appli-
cations is facilitated today by the availability of several cloud-based
chatbot platforms (e.g., Google Dialogflow, Facebook Wit.ai, Microsoft
Bot Framework, IBM Watson Assistant, etc.). Using these platforms,
developers can create many kinds of conversational systems for a variety
of domains (e.g., weather, music, finance, travel, healthcare). Each of
these platforms enables the design of different components (or building
blocks) for a conversational system and customizes them for different
use cases, applications and domains that the user is interested in.

The space of all possible user interactions (Figure 2.4) with a conver-
sational system is defined in terms of three main components: intents,
entities, and dialogue (Özcan et al., 2020; Gao et al., 2018). Intents
express the purpose/goal or specific intended action as discerned from
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Figure 2.4: Conversational system: basic building blocks.

the user utterances. Entities represent information that is relevant to
the user’s purpose. These entities would typically consist of elements or
real-world objects from the domain schema, as well as actual data in-
stances that are relevant to conversation or the context of the user query.
Entities therefore represent the vocabulary supported by the conversa-
tional system. The identification of intent and entities thus constitutes
the natural language understanding component of the system.

Dialogue defines interaction patterns supported by the conversa-
tional system. More specifically, it has three primary tasks: (1) dialogue
state tracking, (2) decision making, and (3) generating the natural lan-
guage response (Gao et al., 2019). The dialogue subsystem provides a
natural language response to a user conditioned on the identified intents,
extracted entities in the user’s input and the current context of the
conversation persisted across multiple turns of the conversation using
dialogue state tracking (history of conversation). Together, the intents,
entities and dialogue form the basic building blocks of any conversation
system irrespective of its type and application domain. Figure 2.5 shows
an example workflow of a conversational system wherein a user requests
for a set of specific movies, the natural language understanding compo-
nent of the system identifies the intent as a movie request, the relevant
entities mentioned and produces a structured semantic representation.
The dialogue takes this as input, updates the conversational context
and takes action to get the information from a movie database using
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Figure 2.5: Example workflow of a conversational system.

a structured query. The results of the query are conveyed to the user
along with a natural language response.

Similar to other natural language interfaces, the identification of
intent and entities from user utterances in a conversational interface
requires parsing of user utterances, entity extraction and recognition
(described in Section 2.3), encoding of the parsed input and its interpre-
tation to identify user intents (Katsogiannis-Meimarakis and Koutrika,
2021a). What distinguishes intent identification in conversational sys-
tems is the inclusion of the conversational context persisted across
several turns of prior conversation while interpreting the current user
utterance. Depending on the identified intent and entities, the dialogue
generates natural language responses using NLG techniques described in
Section 2.4. These natural language responses are often accompanied by
actual information or results retrieved from a variety of external systems
such as knowledge graphs, relational databases, Business Intelligence
(BI) platforms, search engines, or other information retrieval systems.
Such information retrieval from external systems requires generation
of an appropriate structured query or API call based on the user’s
question or utterance. The NLG response generated by the dialogue
in such cases is thus conditioned on the user’s natural language query
(the identified intent and entities), the conversational context (the in-
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formation persisted from prior queries), the resulting action in terms of
a structured query executed against an external data source and the
results retrieved.

There are several techniques and approaches that are used for ac-
complishing each of the steps mentioned above, as well as for enabling
conversational systems with domain-specific knowledge and understand-
ing. These include rule-based approaches for semantic parsing and
interpretation (Saha et al., 2016), ontology-driven systems (Quamar
et al., 2020b) and various deep learning techniques using pre-trained
and fine-tuned language models for both intent identification, struc-
tured query generation and natural language response generation. We
discuss each of these in detail in Section 4, particularly with regard to
conversational interfaces for data analysis and exploration.

Summary

In this section, we provide a brief overview of different techniques em-
ployed by natural language interfaces to data. We describe relevant
data modeling techniques such as ontologies, taxonomies and knowledge
graphs that help in formalizing the semantics of the underlying data.
This enables better interpretation of the user queries in natural language
and identification of relevant data to respond with. We describe the
evolution of language models that have emerged as a powerful tool
in understanding the semantics of natural language utterances and
providing succinct low dimensional representations useful for several
downstream tasks, including semantic tagging and named entity recogni-
tion, which are essential for building natural language interfaces to data.
This section also covers techniques necessary for generating natural
language responses to user queries that are often accompanied with the
results retrieved from the data sources. Finally, we provide an overview
of conversational systems including a classification of such systems, their
basic building blocks and functionalities.
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Natural Language Querying Architectures

At the core of natural language querying (NLQ) systems lies their
abilities to understand/interpret a user query expressed in natural
language and to generate a structured query to be executed against a
structured data source. The main challenges in building such a natural
language querying (NLQ) system can be broadly categorized into the
following three areas.

Natural language understanding and query interpretation. The in-
herent characteristics of natural language queries makes the query
understanding and interpretation difficult. These characteristics often
include ambiguity in terms of intent and entities expressed in the query,
implied query context, linguistic variations, and partial or incomplete
queries such as those that are expressed as keyword searches. An NLQ
system is required to discern the context of such queries to provide
appropriate answers.

Domain understanding and generalizability. Different domains, such
as finance and healthcare, have their own unique characteristics and
vocabulary. An NLQ solution should not only understand the semantics
of a particular domain, but also be adaptable across different domains.

343
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(a) Rule-based systems. (b) Text-to-SQL systems.

Figure 3.1: Natural language querying architectures.

Structured query generation. The complexities of the structured
queries like SQL and SPARQL make the query translation from natural
language very challenging. An NLQ system needs to infer appropriate
entity mappings from a natural language query to schema elements and
to derive correct query structures from linguistic patterns embedded in
a query.

There are numerous NLQ systems and architectures that attempt to
address the aforementioned challenges. They can be classified based on
their interpretation and structured query generation methods. Figure 3.1
shows a broad overview of NLQ system architectures. It captures two
prevalent paradigms in the field, rule-based systems and ML/DL-based
text-to-SQL systems. Both of these architectures require an input query
parsing layer, which involves parsing a natural language query and
transforming it into a more structured intermediate representation.

Following parsing, the rule-based paradigm takes a two-step ap-
proach. The first step involves identifying the entities in the user query,
referred to as semantic entity tagging or entity extraction, and gen-
erating different interpretations based on an underlying knowledge
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model (e.g., indexes, knowledge graphs, ontologies). The second step
is structured query generation, which leverages the mappings between
the entities in the natural language query and the underlying schema
elements and translates the query interpretations into a structured
query like SQL that can be executed against a specific schema.

The other paradigm is the ML/DL-based approaches commonly
referred to as text-to-SQL approaches, where trained models take texts
as input and generate a structured query like SQL in a holistic way.
Figure 3.1 shows a broad overview of different components in these text-
to-SQL systems. Typically, a text-to-SQL system includes the following
high-level steps: (1) natural language representation that transforms the
entities in the input query text into feature vectors or embeddings using
different techniques such as one-hot encoding or pre-trained language
models, (2) encoder, a neural network that takes as input the feature
vectors of the query text and the schema elements, and finally (3)
decoder, that decodes the learnt intermediate representation provided
by the encoder to produce the final SQL query.

Each of these architectures have their strengths and limitations
affecting their adoption for different use cases. We describe these in
further detail in the next two sections. There also exist a few hybrid
approaches, an active area of research, that leverage the strengths of
both rule-based and text-to-SQL approaches to build effective natural
language interfaces to data.

3.1 Rule-Based Approaches

Rule-based approaches identify the entities mentioned within a query, as
well as the relationships between entities, based on an internal or external
representation (e.g., an inverted index, a taxonomy, or an ontology) of
the underlying data. To tackle the semantic tagging challenge (described
in Section 2.3), a typical rule-based system uses an external NLP library
(e.g., Stanford’s CoreNLP), or assumes that the input query is simple
to process (e.g., a (set of) keyword(s)), or utilize certain formatting
rules. This makes entity tagging much easier, allowing those rule-based
systems to focus on the more involved task of query interpretation.
Query interpretation requires understanding of the semantics of the
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identified entities and their relationships. It often requires references to
indexes, external knowledge graphs and ontologies.

Once the natural language understanding (entity tagging and query
interpretation) is finished, structured query generation can take the
resulting query interpretation(s) and translate them into the target
query language, again following some translation rules. For example,
different query keywords (like “HOW MANY”, “BY YEAR”) may be
associated with different query operations (like “COUNT()”, “GROUP
BY [YEAR]”, respectively). More complex rules that generate nested
queries are also applicable in this approach, as described next.

We start this section with a deeper dive into the components of one
of the latest such approaches (Sen et al., 2020) that uses ontologies for
meta-data representation, and then discuss earlier approaches.

ATHENA (Saha et al., 2016; Lei et al., 2018; Sen et al., 2019)
and ATHENA++ (Sen et al., 2020) associate parts of a given natural
language query to concepts and relationships in an ontology that models
the semantics of the data stored in a relational database. An initial
ontology is generated automatically by ATHENA from the underlying
database (Jammi et al., 2018) that captures information available in
the database schema such as tables, columns and their data types,
primary key - foreign key constraints, etc. This basic ontology is further
enriched with semantic information learnt from richer external reference
ontologies such as FIBO, SNOMED, using techniques described in (Hao
et al., 2021). ATHENA and ATHENA++ use Ontology Query Language
(OQL) as an intermediate query language that provides an intermediate
abstract representation of the query against the ontology and helps in
translating the input natural language query into SQL.

In the example of Figure 3.2, the input sentence “Show everyone
who sold bonds in 2021 that have gone down in value” is first parsed to
associate tokens (single words or multiple words) to candidate elements
from the underlying data, which have been modeled as an ontology. For
example, the token “bonds” is associated with the ontology element
“ListedSecurity”. The concept “ListedSecurity” in the ontology maps to
a table with the same name in the underlying relational database. In a
similar way, ATHENA assigns properties to the classes of the ontology,
like the property “value” for the class “MonetaryAmount”, as well as
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Figure 3.2: ATHENA++ example (Sen et al., 2020).

infers restrictions for those properties (e.g., functionality, inheritance,
etc), which further help the query interpretation.

The parsing of tokens in a given sentence is performed through
common NLP libraries, like Stanford’s CoreNLP, as well as rule-based
annotators for person and time references (e.g., “everyone” typically
refers to a person, “in 2021” is a year reference which is captured in
the ontology as “Transaction.time”). The candidate entities from the
ontology, which can be more than one per token (e.g., see the candidate
ontology elements for the token “everyone”) form the Evidence Set, and
they are then connected to each other in the ontology graph, forming
an interpretation tree (Figure 3.2, bottom). A Steiner Tree-based algo-
rithm (Saha et al., 2016), i.e., a generalization of the minimum spanning
tree problem, is used to identify the most coherent interpretation. In
addition, ATHENA++ (Sen et al., 2020) has a nested query detection
mechanism, which can detect hints for nested queries, such as “gone
down” in our running example. This splits the given sentence in two
(or more) sub-queries, each having a separate interpretation tree. The
two trees are connected via the token “value”, which has been found
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to correspond to the ontology element “MonetaryAmount.value”. The
“value” token is used as the join condition between inner and outer
queries.

As a last step, ATHENA and ATHENA++ translate the interpre-
tation tree(s) into an intermediate query language, which can be then
seamlessly translated into the desired query language. The use of an
intermediate query language decouples the query interpretation phase
from the actual data store used. That’s because using exactly the same
intermediate query language as input, different structured query gen-
erators (a.k.a translators) can be created to target a different query
language, e.g., one translating the intermediate query into SQL and
another one translating the intermediate query into SPARQL.

To further exploit the semantics of the ontology to improve the
query understanding capability of ATHENA, Lei et al. (2020) introduce
a query relaxation technique by leveraging external knowledge sources,
with a focus on medical KBs. This query relaxation method aims to fill
the gap between the terms stored in the medical KBs and the colloquial
or imprecise terminology in user queries. More recently, Ahmetaj et
al. (2021) further allow the computation of ontology-enriched query
answers by leveraging the chase procedure from the data exchange
community (Fagin et al., 2005) using an external reference ontology.
This enables to not only return additional answers to user queries over
the underlying medical KB, but also to understand and answer new
queries, which would not be meaningful without the external reference
ontology.

Next, we describe rule-based systems which address the challenges
in natural language understanding and structured query generation
using different techniques, categorized based on whether those tech-
niques rely on inverted indices, taxonomies, or ontologies and knowledge
graphs. When possible, we draw parallels to the different components
of ATHENA and/or the general architecture shown in Figure 3.1 (a).

3.1.1 Index-based Systems

Among the earliest rule-based approaches are Précis (Koutrika et al.,
2006; Simitsis et al., 2008) and QUICK (Zenz et al., 2009), which first
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parse the natural language query to make it machine-readable (what
we previously described as semantic tagging and NER), and then look
up the query sub-strings that correspond to entities, using a simple
index structure. For example, Précis (Koutrika et al., 2006; Simitsis
et al., 2008) converts an input query, consisting of a set of keywords,
to disjunctive normal form (e.g., [“Stanley Kubrick” AND “drama”]
OR [“Woody Allen” AND NOT “comedy”]) and then seeks candidate
interpretations for each query disjunct in the underlying database using
an inverted index of names (e.g., it looks for database records containing
“Stanley Kubrick” and “drama”, as well as for records containing “Woody
Allen” but not “comedy”). QUICK (Zenz et al., 2009) builds an inverted
index on the entity instances of the underlying data, and for each query
(given as keywords), it tries to bind its keywords to the elements of the
inverted index. In addition, users can interact with the results returned
by QUICK and select the query interpretation that best fits their query,
among the suggested options.

Even if it is not a traditional index-based system, one of the most
recent works that leverages an index is Duoquest (Baik et al., 2020),
which efficiently explores the search space for possible queries from
a given natural language query, by employing a guided partial query
enumeration. To help an index-based NLQ system select the best fitting
structured query from its pool of candidate query interpretations, users
can also provide some examples of the answers they are looking for
(following a programming-by-example approach), in the form of a so-
called Table Sketch Query. Duoquest can then easily eliminate candidate
query interpretations that would not produce the answers the user
provided.

3.1.2 Taxonomy-based Systems

To better capture the semantics of the underlying data, more recent
works exploit richer semantic models than simple inverted indices, such
as taxonomies. NaLIR (Li and Jagadish, 2014b; Li and Jagadish, 2014a;
Li and Jagadish, 2016) uses Stanford’s NLP Parser (Marneffe et al.,
2006) for semantic tagging, this way obtaining a linguistic understanding
of a given query, represented as a parse tree (Figure 3.3(a)). The nodes
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Figure 3.3: NaLIR’s internal representation for the query “show all authors who
have more papers than H. V. Jagadish in VLDB after 2005”, adapted from (Li and
Jagadish, 2014b). (a) The initial parse tree from Stanford NLP. (b) A refined parse
tree after some processing and user interaction for disambiguation.

of the parse tree correspond to entities that are associated to entities in
the underlying data using the WUP (Wu and Palmer, 1994) WordNet-
based similarity function. This may result in multiple entity associations
per tree node (e.g., “VLDB” node in Figure 3.3(a) may refer to the
VLDB conference, the VLDB Journal, or PVLDB), which are then
clarified by users. After this user-assisted disambiguation and some
further processing (e.g., checks for grammar validity, node proximity in
original schema), a final refined parse tree (Figure 3.3(b)) is generated
and then translated into SQL.

3.1.3 Knowledge Graph/Ontology-based Systems

Even though taxonomies are clearly more expressive than simple in-
verted indices, there are still semantics involved in a query and in an
underlying data source, which taxonomies cannot capture, the most
prominent of which is relationships of different types between entities.
Such semantics, as well as more conceptual modeling capabilities (e.g.,
functionality, symmetry, transitivity, role hierarchy) can be better cap-
tured in ontologies. SODA (Blunschi et al., 2012) is among the first
works to employ ontologies for query interpretation. In addition to an
inverted index that it uses to look up query keywords in the data, it also
looks up each keyword in an ontology, using a second meta-data-level
index. For example, for a keyword query “clients Amsterdam assets”,
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the keyword “clients” is found as a class in the underlying ontology,
the keyword “Amsterdam” is found in the data, under the values of an
attribute “addresses.city”, while the keyword “assets” is found both in
the ontology and in the data. This potentially leads to several query
interpretations. In this example, SODA creates two interpretations for
this query: one where “assets” is an ontology concept and one where
“assets” is a data value. Those interpretations are ranked based on an
aggregate heuristic function on the lookup scores associated with each
lookup result. The initial query interpretations are used to generate
additional interpretations. In our previous example, “clients” may be
further divided into “individuals” and “organizations” based on the
ontology. Those sub-classes could be used to generate two additional,
more fine-grained interpretations of the initial query.

BELA (Walter et al., 2012) uses a lexical tree adjoining gram-
mar (Unger et al., 2012) for the semantic tagging step of the input
queries. This parsing results in a set of SPARQL query templates, each
corresponding to a possible interpretation of the given query. Unlike
ATHENA that requires domain-specific ontologies, BELA constructs an
inverted index from entities and properties of the cross-domain, publicly
available ontology offered by DBpedia (Auer et al., 2007) to fill in the
unknown slots in the SPARQL query templates. When lookup results
are empty for a slot in a SPARQL query template, BELA retrieves from
the ontology of DBpedia the properties of the entities identified in the
other slots of the SPARQL template. It uses those properties to find
the most similar (via Levenshtein distance) entities from the inverted
index, which are associated with the already identified entities for the
other slots.

USI Answers (Waltinger et al., 2013) employs Stanford’s Core NLP
(Marneffe et al., 2006), as well as ClearTK (Bethard et al., 2014) for
semantic tagging and NER. In a dictionary- and regex-based lookup step,
it produces the candidate entities mentioned in the query, generating
different query interpretations. An ontology models the underlying data
and is used to determine if there is a relationship between the identified
entities mentioned in the query. Similarly to the dedicated annotators
that ATHENA uses for detecting nested queries, USI Answers also
employs a dedicated relationship annotator for that step, while there are
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also two more annotators, one dedicated to concepts and one dedicated
to temporal mentions.

TR Discover (Song et al., 2015) uses a feature-based context-free
grammar for semantic tagging, and also provides query auto-completion.
Users start typing a part of the query and they are able to select one of
the suggested lexical entries (an entity, or a property) for the current
segment of their query. At the same time, TR Discover suggests the next
lexical entries that are reachable from the selected query segment, based
on the context-free grammar. The ranking of these suggestions is based
on the nodes centrality in an RDF graph, in which each node represents
a different lexical entry. For example, when users start typing “d”, they
can select the option “drugs” among the alternatives “drugs using” or
“drugs having a primary indication of”. Upon selecting “drugs”, the users
can then select the suggestions “drugs using”, or “drugs manufactured
by”, or “drugs developed by” since those are all properties of the concept
“Drug” in the underlying RDF graph. This is a very useful feature that
is missing from many other works, as it helps not only the users to
understand the query capabilities of the underlying system (by showing
suggested queries), but also the NLQ system to have a better control
over the user-provided queries.

Dhamdhere et al. (2017) propose Analyza, a system which provides
a natural language interface integrated into a multi-modal tool for ex-
ploring data stored in spread sheets as well as databases. Analyza uses
a meta-data store that contains vocabulary used for disambiguation,
schema information annotated with column types (measures, dimen-
sions), data formats and ranges, and a knowledge base for mapping
entity values like “Germany” to schema elements such as column names
like “Country”. The system uses a semantic parser based on a context-
free grammar that takes the natural language query as input, exploits
the metadata store with annotations and extracts the intent, measures,
dimensions, filter values such as date ranges, etc. and creates an in-
termediate structured representation. A simple algorithm is used for
identifying the appropriate table in the underlying schema that contains
all the columns referenced in the query. A query generator transforms
the semantic parse into an actual SQL query or spread sheet formula
using a template based generation system. Finally an interpretation
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generator generates a natural language response to the system’s in-
terpretation of the query to be supplied to the user along with the
results.

GeoQA (Punjani et al., 2020) is a template-based question answering
system over geographic data. It uses Stanford’s CoreNLP for part-of-
speech tagging and generating a dependency parse tree. For feature types
of interest, the Concept Identifier component of GeoQA maps parts of
the query to the DBpedia, GADM, and OSM ontologies, using a string
matcher, together with a lemmatizer on the entity labels provided by
those ontologies, as well as synonyms provided by WordNet. Then, the
Instance Identifier component uses the TagMeDisambiguate (Ferragina
and Scaiella, 2010) tool for named entity recognition and disambiguation
on candidate geographic entities. Some pre-specified properties used in
geospatial queries (e.g., height, elevation), associated with specific DB-
pedia classes (e.g., Mountain), are further employed for better detecting
the feature that the user is interested in knowing, once the entity type
has been detected from the Concept Identifier. The final query is struc-
tured using GeoSPARQL1, a geospatial extension of SPARQL, from
a set of hand-crafted templates. The correct template is identified by
comparing the dependency parse tree of the query to the corresponding
trees of the query templates.

The rule-based systems described above are strong in their semantic
understanding of the input natural language query that is interpreted
using different techniques such as indexes, taxonomies and knowledge
bases/ontologies. However, they have been shown to be brittle at han-
dling linguistic variations in natural language queries. These limitations
can be handled using deep learning technologies such as language mod-
els and different neural network architectures that use a data-driven
approach to extract relevant context. Next, we describe text-to-SQL
systems that use deep learning technologies for generating SQL from
natural language.

1http://www.opengeospatial.org/standards/geosparql

http://www.opengeospatial.org/standards/geosparql
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Figure 3.4: Text-to-SQL overview.

3.2 Text-to-SQL Approaches

Text-to-SQL approaches are an active area of research and development.
In this section, we provide a brief overview of these systems and describe
a couple of representative systems to illustrate the different techniques
and architectures used by these systems for natural language query to
SQL translation. For more examples and details, we refer the reader to
a recent survey (Katsogiannis-Meimarakis and Koutrika, 2021a), solely
focusing on text-to-SQL systems.

The recent success of artificial intelligence and in particular deep
learning triggered a new trend of building NLQ systems. The key idea
here is to use a supervised learning approach that views the problem
of text-to-SQL as a machine translation problem. These systems use
a trained ML/DL model that translates a natural language query, a
sequence of words, to a structured query such as SQL as an output
to be executed against a schema. Figure 3.4 shows an overview of a
generic text-to-SQL system architecture with three basic components.
The natural language input representation takes the natural language
query and schema elements to generate feature vectors. The encoder
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takes the input feature vectors of the query text and schema elements as
input and learns an intermediate representation of this combined input.
Finally, this intermediate representation is decoded by the decoder to
generate the SQL query. We describe each of these components in detail
below.

Natural Language Input Representation. The input to a text-
to-SQL system is a combination of the natural language query as well
as schema elements against which the query is expressed. This input is
provided in terms of the natural language query tokens and names of
schema elements as a sequence of words, which are converted into feature
vectors (or embeddings) using word/sentence embedding techniques
described in Section 2.2. These feature vectors are, then, provided as
input to the encoder using different structural compositions, which we
describe next.

Encoder. The input to the encoder, which is expressed as a fea-
ture vector of query tokens and schema elements, can be structurally
composed in a variety of different ways (Katsogiannis-Meimarakis and
Koutrika, 2021a) as shown in Figure 3.4. (1) Feature vectors of query
text and schema elements as separate inputs to the encoder. Initial
text-to-SQL systems such as Seq2SQL (Zhong et al., 2017), SQLNet
(Xu et al., 2017) encode the natural language query (a sequence of
tokens) and schema elements such as the database column names2

separately. The encodings are combined using different mechanisms
such as attention, concatenation, different types of aggregations, etc.
(2) Feature vectors of query text and schema elements concatenated
together. With the rapid advances of language models, the more recent
text-to-SQL systems, such as SQLova (Hwang et al., 2019), SDSSQL
(Hui et al., 2021), IRNet (Guo et al., 2019) and ValueNet (Brunner and
Stockinger, 2020), use a single encoder for encoding both the natural
language query tokens as well as the schema elements represented as
a concatenated sequence of words. (3) Feature vectors of query text
and and each individual schema element concatenated together. This
approach used by systems like HydraNet (Lyu et al., 2020) encodes
the input query with each schema element like the database column

2Separate encoding allows for column names with multiple words.
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separately allowing for separate predictions for each schema element.
(4) Feature vectors of query text and schema elements combined together
as a graph. Systems like RAT-SQL (Wang et al., 2019) and SmBoP
(Rubin and Berant, 2020) use a more complex input encoding wherein
the schema elements are represented in the form of a graph preserving
relationships between the tables and columns. The natural language
query words or tokens are also added to the graph as nodes linked to
appropriate schema elements based on entity mappings.

Decoder. The decoder takes the intermediate representation learnt
by the encoder as input and produces the final structured query. As seen
in Figure 3.4, there are several different output decoding techniques
that are employed by a text-to-SQL system. (1) Sequence-to-sequence
decoding. Systems like Seq2SQL (Zhong et al., 2017) and SEQ2TREE
(Dong and Lapata, 2016) treat the decoding as a sequence-to-sequence
translation wherein the model learns to generate the output SQL query
as a sequence of tokens. Although viewing the text-to-SQL problem as
a sequence-to-sequence machine translation simplifies the architecture,
this technique is prone to making syntactical errors, thereby producing
incorrect SQL queries that cannot be executed against the database
schema. (2) Template or sketch-based decoding. Systems like SQLNet
(Xu et al., 2017), SQLova (Hwang et al., 2019) and HydraNet (Lyu
et al., 2020) break down the problem of generating the SQL query into
predicting smaller sub-parts such as predicting the SELECT column
values and aggregations, predicates or filters in the WHERE sub-clause,
etc. This technique can be considered akin to a template or a slot-
filling mechanism which has been shown to work well for simple queries,
but difficult to extend to generating more complex SQL queries. (3)
Rule-based decoding. To enable generation of more complex SQL queries
systems like IncSQL (Shi et al., 2018), IRNet (Guo et al., 2019) and
RAT-SQL (Wang et al., 2019) generate a sequence of rules instead of
a sequence of tokens of a SQL query. These grammar-based rules are
applied sequentially to generate the final SQL query.

Although the above mentioned decoding techniques especially tem-
plate and rule based, have shown to produce SQL quite accurately, there
are still instances where these techniques fall short (e.g., an incorrect
aggregation on a particular column type or a mismatch while applying
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a filter condition to a column of a particular type). This could be due
to inadequate training data or the complexity of SQL that needs to
be generated as such. Execution based decoding (Wang et al., 2018a)
avoids making choices that cause such syntactic errors by choosing an in-
cremental mechanism of actually executing partially complete predicted
SQL queries to detect faults and exclude those incorrect choices. These
choices would however have to be made at the expense of additional
prediction time required for execution of partially predicted queries
against the database slowing down the inference process significantly.
Next, we give a brief overview of some popular text-to-SQL systems that
use the above mentioned techniques for input representation, encoding
and decoding.

Seq2SQL (Zhong et al., 2017) is one of the earliest text-to-SQL
systems which uses GloVe (Pennington et al., 2014) embeddings for
input representation. It uses a deep neural network architecture with
reinforcement learning to translate natural language to SQL. Seq2SQL
uses an LSTM (Hochreiter and Schmidhuber, 1997) encoder-decoder
architecture for generating SQL from NL. LSTMs are a type of Recurrent
Neural Network (RNN) that use feedback connections i.e. using the
output of a cell as input for subsequent steps. Feedback helps build a
short term memory (information over a sequence of inputs) that can
be persisted over a long time, enabling them to handle sequences of
input data and produce sequences of output data. This makes them
a good choice of language translation. Further, their use for language
translation tasks has gained popularity due to their ability to overcome
the problem of vanishing gradients often seen in feedback networks, by
using a persistent linear cell surrounded by non-linear layers that feed
input and parse output from LSTM cells.

Seq2SQL uses a bidirectional LSTM encoder for encoding the se-
quence of natural language query, the schema elements (list of all
column names) and SQL vocabulary (SELECT, WHERE, COUNT,
MIN, MAX, etc.).The input to the encoder are GloVe embeddings
corresponding to the input sequence of words. Seq2SQL then applies an
augmented pointer network (Vinyals et al., 2015) to generate the SQL
query token-by-token by selecting from an input sequence. Seq2SQL
takes advantage of the SQL structure and different sub-parts of the
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deep neural network predict different clauses of the SQL query such as
SELECT clause columns and aggregation functions, WHERE clause
columns and conditions (shown in Figure 3.5). Specifically, the Seq2SQL
network first classifies an aggregation operation for the query, with the
addition of a null operation that corresponds to no aggregation. It then
points to a column in the input table corresponding to the SELECT
column. Finally, the network generates the WHERE clause conditions
for the query using a pointer network. The first two components i.e.
aggregations and SELECT columns are supervised using cross entropy
loss. The generation of the WHERE clause component is done using re-
inforcement learning to learn a policy to directly optimize the expected
correctness of the execution result to address the issue that different
orders of conjunctive predicates in the WHERE clause can produce
SQL queries with the same result. Finally, Seq2SQL uses a two layer,
unidirectional LSTM as a decoder network which uses an attention
mechanism to output the final SQL.

Attention mechanisms (Vaswani et al., 2017) are widely used in deep
neural network encoder-decoder architectures. Similar to cognitive atten-
tion, attention mechanisms in neural networks allow them to give more
weight to certain parts of the input that is more important than other
parts depending on the context. These attention mechanisms manifest
as soft weights that vary at runtime and are trained as fully connected
neural network layers using gradient decent. Typically a correlation
matrix of dot products is used to calculate the attention coefficients that
allow the encoders and decoders to give different importance to different
parts of input/output based on these soft weights. They are specially
relevant for language translation tasks where the encoders for NL input
and decoders that produce SQL need to give varying importance to
different parts of the input/output sequence based on context.

The Seq2SQL model is trained by using gradient descent to minimize
an objective function of the above three components. Namely, the total
gradient is the equally weighted sum of the gradients from the cross
entropy loss in predicting the SELECT column, from the cross entropy
loss in predicting the aggregation operation, and from policy learning
for the WHERE clause. Utilizing the structure of SQL allows Seq2SQL
to prune the output space of queries, which has been demonstrated to
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Figure 3.5: Seq2SQL architecture (Zhong et al., 2017).

work on simple single-table queries without joins. However, Seq2SQL is
limited in terms of the query complexity, because its dependence on the
order of input sequence as well as the sequence-to-sequence translation
model’s ability to only capture rather simple SQL query structures.

SQLNet (Xu et al., 2017) encodes the natural language query and
schema information separately, uses column attention and employs a
sketch-based approach to generate SQL akin to a slot-filling task. Each
SQL query component is assigned a unique pair of LSTM encoders
and column attention is used to ascertain the affinity of words in a
natural language query with certain schema elements such as table
names. This fundamentally avoids the shortcomings of the sequence-to-
sequence approach as the SQL query generation is less dependent on
the order of the input and utilizes the more structured sketch-based
approach. TypeSQL (Yu et al., 2018a) further improves upon SQLNet
by proposing a different training procedure that predicts values for
the slots in the SQL sketch in a single model. It further utilizes types
extracted from either knowledge graph or table content to help the
model better understand entities and numbers in the question.

Other systems that employ a sketch-based decoding approach include
HydraNet (Lyu et al., 2020) and SQLova (Hwang et al., 2019). Both
HydraNet and SQLova use the pre-trained language model BERT for
input encoding. While in HydraNet the input natural language query is
encoded separately with each table column, SQLova concatenates all the
table columns together and encodes it with the natural language query.
In both systems, the BERT output is then decoded for predicting the
different parts of the SQL query (slot-filling) such as the aggregations,
SELECT columns, filter conditions including columns and operators,
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etc. HydraNet uses simple linear networks to decode the BERT output
and chooses columns for different parts (i.e., SELECT and WHERE) of
the SQL query. SQLova uses a more elaborate NL2SQL Layer which
further encodes the output of the BERT encoding layer using a pair
of LSTM-q (question encoder) and LSTM-h (Table header encoder)
along with column attention for each sub-part of the SQL query. In
addition, HydraNet also employs Execution-based decoding as proposed
by (Wang et al., 2018a) to eliminate SQL errors. Both HydraNet and
SQLova only support simple SQL queries with no nested structure and
have been shown to achieve good performance on WikiSQL.

Although systems such as HydraNet and SQLova that employ a
sketch-based method combined with execution guided decoding perform
strongly on the WikiSQL benchmark, the execution-based decoding
comes at the cost of significant increase in inference time. Schema
Dependency Guided multi-task text-to-SQL (SDSQL) (Hui et al., 2021)
proposes a technique to learn the interactions between the natural
language query components and schema elements. Similar to SQLova,
SDSQL encodes the natural language query and concatenated set of
columns using BERT. The output of BERT is then fed to a 2-layer
Bi-LSTM to obtain a task-related representation. This representation
is then fed into two separate networks, one for SQL prediction and
one for schema dependency prediction (i.e., obtaining the dependency
between questions and schemas). The schema dependency module uses
a Bi-LSTM followed by a multi-layer perceptron (MLP) and a Bi-Affine
transformation.

A multi-layer perceptron is a feed-forward network that consists of
at least three layers of nodes: an input layer, a hidden layer and an
output layer. Each of these layers except for the input have a non-linear
activation function such as ReLU. The neurons in the network are
trained using back-propagation and the network model approximates
a continuous function that can distinguish data that is not linearly
separable. Together, the Bi-LSTM, MLP and the Bi-Affine transfor-
mation form a bi-affine deep neural network mechanism (Dozat and
Manning, 2016), that is widely used in dependency parsing tasks. It
decomposes the dependency prediction into the presence or absence
of a dependency (edge), and the type of potential edge (label). The
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SQL prediction module is similar to SQLova. They use an adaptive
multi-task loss to optimize both networks and generate dependency
training data based on the expected SQL.

SmBoP (Rubin and Berant, 2020) is the most recent work focusing
on text-to-SQL semantic parsing. It utilizes the state-of-the-art RAT-
SQL encoder (Wang et al., 2019) and introduces a semi-autoregressive
bottom-up semantic parser to construct a SQL query at the decoding
step. Specifically, at each decoding step t, SmBoP uses cross-attention
to contextualize the trees (i.e., the SQL abstract syntax tree) with
information from the input natural language question. It generates in
parallel the top-K program sub-trees of depth ≤ t. The neural bottom-
up parsing also provides learned representations for SQL sub-queries,
which are sub-trees computed during the construction procedure, in
contrast to top-down parsing, where hidden states represent partial
trees without clear semantics.

Other works focus on domain adaptation and transfer learning.
Wang et al. (2018b) introduce a general purpose transfer-learnable NLQ
system with the goal of training a model that could be used against
different datasets. The system focuses on the latent semantic structure
of natural language queries against relational databases to provide the
ability of transfer learning against different datasets. The proposed
system separates data instance values and schema elements mentioned
in a natural language query using annotations. The annotation process
utilizes the database metadata including the schema, database statis-
tics, database values and the knowledge of common natural language
expressions used to refer to specific columns of a database. The task
of annotating is a two-stage process consisting of mention detection
and mention resolution. The first stage detects a set of many possible
mentions of column and values, in which some mentions may be in-
consistent with others since certain possibilities are mutually exclusive.
The second stage finds a maximum subset of these mentions that is
consistent, which constitutes the output annotation. The annotated
natural language query is translated to an annotated SQL query using
a Seq2Seq model. Finally the annotated SQL query is converted to a
regular SQL query.
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The requirement of large amounts of training data for supervised
training of deep neural networks is often a road block while building
effective text-to-SQL systems. To alleviate this issue, DBPal (Basik
et al., 2018; Weir and Utama, 2019) avoids manually labeling large
training data sets by synthetically generating a training set that only
requires minimal annotations in the database. DBPal uses the database
schema and query templates to describe natural-language/SQL pairs.
Specifically, the query templates are used instantiate different possible
SQL queries that one might phrase against a given database schema.
Namely, the space of all possible SQL queries can be defined using a
set of SQL templates. The results show that on a single-table data set
DBPal performs better than the semantic parsing approach.

Machine learning-based approaches have shown promising results
in terms of robustness to natural language variations. However, these
systems still have limited capability of handling complex queries involv-
ing multiple tables with aggregations, and nested queries. In addition,
they require large amounts of training data, which makes the domain
adaption challenging. Next, we describe hybrid approaches that attempt
to address some of these limitations.

3.3 Hybrid Approaches

Rule-based architectures are more adept at translating more complex
natural language queries to complex structured queries. They are also
amenable to incorporation of domain knowledge. However, they are
brittle to language variations and often require a lot fine tuning to
handle such variations. Deep learning based approaches on the other
hand are more robust to language variations and are adept at learning
directly from data. However, they work well only for simple natural
language to structured query translations and often require a large
amount of training data. Most of the text-to-SQL systems discussed
above do not exploit external knowledge bases or perform any explicit
schema linking or entity mapping between the natural language query
and the elements of the underlying schema and rather depend on the
neural networks to learn these implicitly through training data. This
might lead to poor performance when used to query datasets belonging
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to different domains or datasets containing schema elements (tables and
columns) with names not seen while training (out of domain words),
resulting in poor domain adaptation.

Hybrid approaches provide the promise of leveraging the strengths
of both these architectures to overcome their limitations to build more
effective natural language interfaces to data. Next, we describe a few
examples of such hybrid approaches.

RAT-SQL (Wang et al., 2019) is one of the text-to-SQL systems
that employs an encoder that takes a more complex input in the form
of a graph (depicted in Figure 3.6). The graph is created using explicit
schema linking techniques that leverage information from external
sources making the system hybrid. It creates a heterogeneous question
contextualized schema graph wherein the nodes represent both schema
elements as well as entities or tokens from the natural language query.
This is done in a two step process. First, the database schema is
represented as a directed graph wherein nodes represent columns and
tables each labelled with the their corresponding schema names. The
edges between nodes in the graph that represent schema elements are
inferred using the schema relations such as the primary-key foreign key
relations. This is a one time process for each database schema.

Second, for each NL query, the query tokens are introduced in the
graph as nodes and the edges between the nodes representing the natural
language query tokens and the nodes representing the schema elements
are inferred using explicit schema linking including schema name-based
linking (using exact or partial n-gram match) as well as value based
linking (using indices or textual search). Specifically, name-based linking
refers to exact or partial occurrences of the column/table names in
the question, since textual matches are the most explicit evidence of
question-schema alignment. Value-based linking, on the other hand,
becomes useful when the question mentions any values that occur in
the database and consequently participate in the desired SQL. RAT-
SQL captures a column-value relation between any word in a natural
language query and column name if the word occurs as a value or a full
word within a value of the column name.

The initial input representation for input encoding is provided using
GloVe, or LSTM, or BERT. Every RAT layer uses self-attention between
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Figure 3.6: RAT-SQL framework (Wang et al., 2019).

all elements of the input graph to compute new contextual represen-
tations of question words and schema members. This self-attention is
biased towards some pre-defined relations using the edge vectors in each
layer. The set of used relation types are predefined using the name-based
linking and value-based linking described above. Occurrences of these
relations between the question and the schema constitute the edges.

RAT-SQL employs a modified transformer architecture (Vaswani
et al., 2017) that uses relation-aware self attention for the network
to learn the biases towards the different types of relationships in the
input encoding. The transformer architecture consists of an encoder and
decoder. However, instead of using LSTMs to capture the sequences,
the encoder and decoder mainly consists of several stackable units of
multi-head attention and feed-forward layers. Both the input (NL query
token embeddings) and output (target SQL query token embeddings)
are embedded into a latent space. Since there are no LSTMs to capture
the sequence, an important addition to this architecture are Positional
Encodings. These positional encodings allow the specification of the
relative position of every token in the input and target sequence which
depends on the order of its occurrence in the sequence. These positions
are added to the token embeddings of each word in the NL query and
target SQL query. Each of the multi-head attention layers in the encoder
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and decoders compute an attention matrix by multiplying the vector
representation of each word (Q) in the input sequence with the vector
representations of all the words in the sequence (K, also called Keys).
Therefore, the weights in the attention matrix capture how each word
of the sequence is influenced by all the other words in the sequence. A
softmax function is applied to scale the weights between the values of 0
and 1.

Finally, the vector representations all the words in the sequence (V,
also called Values (Same as Q)) are multiplied by these weights. The
attention mechanism is repeated multiple times to allow the system
to learn from different representations of Q, K and V. These linear
representations are done by multiplying Q, K and V by weight matrices
W that are learned during the training. The Feed Forward Layers after
the attention layers allow for a linear transformation of each element
from the given sequence. The output of the encoder is fed as input
into one of the multi-head attention layers of the decoder so that the
encoder input-sequence is taken into account together with the decoder
input-sequence. Note that in this case the input V to the multi-head
attention layer in the decoder is the output of the previous attention
head in the decoder. The final output of the decoder is a softmax layer
which outputs probabilities. Given an input encoder sequence and a
particular decoder output sequence shifted by one, the transformer
model learns to predict the next word in the sequence.

In RAT-SQL, the relation-aware transformer is directly followed by
a grammar-based LSTM decoder which produces a sequence of rules
or decoder actions used to construct an abstract syntax tree similar to
IRNet. The final SQL is inferred from the generated abstract syntax
tree.

Approaches such as Ben Abacha and Zweigenbaum (2015), Bast and
Haussmann (2015), and Bergamaschi et al. (2016) combine rule- and
learning-based query understanding in a multi-step strategy making
them hybrid approaches. For example, QUEST (Bergamaschi et al.,
2016) first chooses the entities that are relevant to the keywords in the
query based on Hidden Markov Models (HMM), trained on a data set of
previous searches, validated by the user. The relationships between the
entities extracted from the query are then computed based on heuristic
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rules that consider the relationships of those entities in the database. The
candidate interpretations are ranked based on the aggregate confidence
scores returned by the HMM. However, these systems are still not
capable of covering a full spectrum of the complexity of generated
queries. Hence, more research is needed on this hybrid approach that
attempts to leverage the best from both worlds.

Other approaches such as IRNet (Guo et al., 2019), address the issue
of better domain adaptation with an explicit schema linking mechanism
between the tokens of natural language question and the elements of
the database schema (tables, columns), thus making them hybrid. All
n-grams of length 1-6 in the natural language query are tested to match
against the database schema resulting in some complete and partial
matches. For data instances or values the system uses ConceptNet (Net,
2021) to determine the corresponding schema element to link to. IRNet
uses BERT encodings wherein the natural language spans are appended
with their linked schema tokens. IRNet uses a grammar based decoder
model to generate an intermediate representation in terms of a SemQL
(Semarchy, 2021) abstract syntax tree. The systems then infers the SQL
query from this intermediate representation using domain knowledge
obtained through explicit schema linking.

ValueNet (Brunner and Stockinger, 2020) further improves upon
IRNet by improving the condition value prediction for the filter clauses in
a SQL query. Often times the values mentioned in the natural language
query do not match the values stored in the database. This could be
because of the use of abbreviations such as IBM for “International
Business Machines” or use of synonyms of values stored in the database.
ValueNet uses NER along with some heuristics for value extraction from
the natural language query. It then generates candidate values from
the database that are similar to the extract entities using indices and
string pattern matching. The input encoding concatenates the natural
language query with the schema elements (Table and column names) as
well as the identified candidate values. ValueNet uses a similar decoder
architecture as IRNet with an improved SemQL 2.0 grammar (Lee and
Baik, 1999) to generate the abstract syntax tree and infer SQL queries.

DBTagger (Usta et al., 2021) provides a deep learning architecture
based on bi-directional Gated Recurrent Units (GRUs) (Cho et al.,
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2014) for the task of entity tagging (Figure 1.1) in NLQ pipelines. It
extends the supervised learning DL architecture of sequence tagging,
by utilizing multi-task learning and cross-skip connections. They learn
POS (part-of-speech), type and schema tags from annotated query logs,
and make the observation that the schema tags of keywords are highly
correlated with POS tags. Their techniques can be plugged into any
rule-based NLQ pipeline to identify the mapping of the keywords in the
user query to the database elements.

Summary

In this section, we present two commonly used paradigms for natural
language interfaces to data, rule-based systems and text-to-SQL systems.
Rule-based approaches rely on a semantic data model, such as an
ontology, knowledge graph, or a semantic index to identify entities and
their relationships in the user’s natural language query, and use rule-
based interpretation techniques to generate the final SQL or SPARQL
query. Text-to-SQL systems, on the other hand, encode user input into
a feature embedding and train deep learning models to generate the
SQL query in a holistic way. These systems leverage the recent advances
in language models and NLP to convert input texts into SQL. While
rule-based approaches provide easier domain adaptation, text-to-SQL
systems are more robust to the paraphrasing of the input query. There
are also a few emerging hybrid approaches that leverage the best of
both worlds to overcome their limitations to build more effective natural
language interfaces to data. Hybrid approaches use a combination of
DL models and rule-based techniques for different problems, such as
entity tagging or structured query generation, in the NLQ pipeline. We
believe more research is needed for all these techniques to provide better
accuracy and reliability, as we discuss in Section 6.



4
Conversational Data Analysis and Exploration

Conversational systems are an extension of natural language interfaces
to support a two-way conversation (a dialogue) between the user and
the system, using the principles of human-to-human conversation (Gao
et al., 2018). Conversational interfaces to data are rapidly gaining pop-
ularity because of their unique ability to enable exploration of data
and derivation of insights in small incremental steps as the conversa-
tion with the data progresses. Conversational systems can understand,
respond and clarify ambiguity through interactions with the user in
natural language, while persisting the context of the conversation across
multiple turns.

The technologies exploited by NLQ systems for natural language
understanding, generation of structured queries to retrieve data and
natural language responses, as mentioned in Section 3, are also applica-
ble for building conversational interfaces to data. However, this requires
extending their ability to represent the two-way structure or multi-turn
dynamics of a dialogue. Our focus in this section is to describe systems
and technologies that enable this extension to conversational systems
by exploiting models that capture both the multi-turn dynamics as
well as the structural context in a dialogue. We limit our discussions
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Figure 4.1: Conversational system: technology stack.

specifically to technologies and systems pertinent for building conversa-
tional interfaces for data exploration. These systems could be considered
to fall under the category of task-based conversational systems where
the task is data exploration/analysis. We cover both open-domain and
domain-specific systems (as classified earlier in Figure 2.3). For a more
comprehensive overview of the basic components of conversational sys-
tems and the challenges involved in the application of deep learning
techniques for the development of state-of-the-art dialogue systems, we
refer the reader to (Chen et al., 2018).

Figure 4.1 shows an overview of the technology stack employed for
building conversational interfaces to data. This includes conversational
semantic parsing and dialogue management. Conversational semantic
parsing provides the necessary capability of language understanding.
Similar to the language understanding techniques mentioned in Section
3, conversational semantic parsing entails parsing of natural language
queries/utterances across multiple turns of conversation for detecting
intents and entities. Intent identification is usually framed as a user
utterance classification problem (Chen et al., 2018), wherein each user
query can be classified to a particular intent with a certain probability.
Identifying entities is more traditionally referred to as semantic slot
filling in conversational systems, i.e., identifying (tagging) words/tokens
in the natural language text with their appropriate semantic entity types
(see Section 2.3, Semantic tagging). Together, conversational semantic
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parsing provides a more structured semantic representation of the user
input enabling natural language understanding.

Dialogue management includes (1) state management to track the
current state of data exploration, given the history of prior interactions
between the user and the system, (2) decision making and structured
query generation for choosing an appropriate external knowledge source
and retrieving data for a given user query, and (3) NL response genera-
tion to describe the results obtained and enable a two-way conversation
with the user. Next, we describe each of these technologies and their
state-of-the-art in further detail. The section also introduces a use case
for conversational interfaces to data for business intelligence systems
and applications.

4.1 Conversational Semantic Parsing

Semantic parsing of natural language utterances enables the extrac-
tion of a structured semantic representation of the user utterance that
enables inferring of intent and entities. We discuss below some of the
challenges associated with each, as well as those that arise while extend-
ing capabilities of semantic parsing to a two way dialog.

Intent identification is modelled as a classification task and requires
labelled training data for training classification models such as Support
Vector Machines (SVMs) or more recently Deep Neural Networks. Some
of the challenges involved in training classification models for intent
identification involve identifying the number of intents(labels) the model
can support with high accuracy. This requires the estimation of the
actual distribution of queries in the expected workload and is often
determined empirically. Dealing with class imbalance during training
is also a frequently encountered problem while training classification
models on real data, as real workloads are often skewed. This may lead
to classification bias towards the majority class, skewing the classifi-
cation boundary and over fitting. Techniques such as blocking which
under sample the majority class to reduce imbalance, customizing the
loss function to penalize mis-classification of minority classes, data
augmentation (both real and synthetic) to reduce class imbalance are
some of the techniques that are used to overcome these limitations.
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Identification of entities or slot filling also faces several challenges
that have been addressed using several different approaches. These in-
clude rule-based approaches, such as those discussed in Section 3.1, that
employ a context free grammar to parse a user utterance and identify
the non-terminals as the associated tags. Although these approaches
have the advantage that they are very precise, they involve a lot of
manual effort in defining the set of rules required. Machine learning
approaches address this problem and require feature engineering to
represent words in text and use a data corpus to train probabilistic
models that provide the probability of tags associated with a word.
Deep learning approaches further improve on these ML techniques as
they do not require manual feature engineering. Encoded words (word
embeddings) are fed to a deep neural network that extracts the required
features to predict the tags associated with the words in the user’s
utterance.

Additional challenges for conversational systems arise from extend-
ing the capabilities of traditional semantic parsing technologies that
are designed for understanding the structure of single user utterance
or one-shot queries. These challenges include dealing with co-reference
resolution (i.e., references to the same entity) and context from prior
queries in the session that are traditionally handled by the dialogue
system. Conversational semantic parsing addresses this limitation of
semantic parsing of single user utterances, and extends the concept of
semantic parsing of a natural language query to a sequence of natural
language queries issued by the user across multiple turns of conversation.
This allows for co-reference resolution and context carryover from prior
queries for appropriate semantic slot filling, enabling a comprehensive
understanding of user queries in a given data exploration session. Next
we describe a few state-of-the-art deep learning approaches for conversa-
tional semantic parsing that address some of the challenges associated
with context representation across multiple turns of user utterances.

Seq2Seq Approach. Aghajanyan et al. (2020) propose a Seq2Seq
approach for a session-based parsing that attempts to extend the ex-
isting semantic parsers for one-shot query answering to conversational
semantic parsing for multi-turn queries. They enhance the traditional
Seq2Seq architecture based on the Pointer-Generator architecture (See
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et al., 2017) to build a semantic parsing model that removes the tight
coupling between the sequence of words in the original user utterance
and its semantic representation, focusing more on the semantic entities
(slots) and removing text snippets occurring in a non-leaf spot in a
regular compositional semantic parse. This allows words to be grouped
logically into the same slot even though they may be spread apart in
the original sentence. For example, in the utterance “For financial year
2021, show me the net revenue in the first Quarter for Microsoft Inc.”,
financial year 2021 and first quarter belong to the same date-time slot.
Their proposed model provides further enhancements to the decoupled
semantic parse model with the use of a bidirectional LSTM, or a trans-
former to encode a sequence of user queries. The decoder produces a
semantic parse tree structure that captures relevant information across
the user utterances in a session. This allows for co-references which
are explicit references to slots in a previous utterance, and implicit
references based on contextual information (slot carry-over), enabling
a better understanding of information across user queries in a session
especially relevant for data exploration.

Pre-trained Language Model-based Approach. Another ap-
proach for context representation across multi-turn queries in conversa-
tional semantic parsing is based on pre-trained language models. Current
language models pre-trained on free-form text corpora are limited in
their ability to represent the two-way structure or multi-turn dynamics
of a conversational system for data exploration. SCoRe (Structured
and Sequential Context Representation) (Yu et al., 2021) addresses the
limitations of existing language models (Section 2.2) for conversational
semantic parsing by introducing a second phase of pre-training that
captures the two-way conversational patterns as well as the dialogue
context across multiple turns. The second phase of pre-training consists
of training a task-oriented language model contextualized by conversa-
tional flow and the underlying schema/ontology. In addition to masked
language modeling for contextual representation learning of natural
language utterances, SCoRe utilizes multiple training objectives: (1)
column contextual semantics: that enable linking of user utterances to
schema elements of an underlying ontology (slot filling) and (2) turn
contextual switch: that captures the relationship between different ut-
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terances across multiple turns of conversation. Together, this enables
the model to learn an accurate representation of the conversational flow
across multiple turns and its mapping to the underlying schema.

4.2 Dialogue Management

The dialogue defines the space of interaction patterns supported by a
conversational system (Section 2.5). The dialogue subsystem provides a
natural language response to a user conditioned on the identified intents,
extracted entities (slot filling) in the user’s input using conversational
semantic parsing described above. It also takes into account the current
context of the conversation persisted across multiple turns of the con-
versation (i.e. state of data exploration) as well as the results obtained
from external knowledge sources through the execution of a structured
query. This carrying over of context from prior user queries is what
essentially differentiates dialogue from one-shot query answering.

We describe the different components of dialog management, in-
cluding (1) dialog state tracking, (2) structured query generation, and
(3) natural language response generation (Figure 4.1) in further detail
below. Note that although we describe each of these tasks separately and
provide references and expositions of example systems that implement
these tasks using different techniques, these individual tasks are closely
intertwined with each other. With recent advances in machine learning,
particularly in deep neural networks, there is an increasing trend in
using these techniques to learn dialogue management models as a whole
that can accomplish all of these tasks.

4.2.1 Dialogue State Tracking

Dialogue state tracking enables estimating the current state of the
dialogue (also referred in literature as the belief state) given the history
of prior conversation between the user and the system. This entails
keeping track of the current state of data exploration given the prior set
of queries issued by the user in a data exploration session1. The system

1We define a data exploration session as the set of queries issued by a user for a
given analysis task.
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uses this internal representation of the current state of data exploration
obtained via dialogue state tracking to decide on the next action such
as issuing a structured query against an external data source to obtain
results and providing an appropriate natural language response to the
user.

Several different approaches have been proposed for building the
dialogue structure and maintaining state across turns for a conversa-
tional interface: (1) Rule-based systems (McTear, 2002; Mallios and
Bourbakis, 2016) are used in finite-state dialogue management systems
which are simple to construct for tasks that are straightforward and
well-structured, but have the disadvantage of restricting user input to
predetermined words and phrases; (2) Frame-based systems (Fitzpatrick
et al., 2017; Beveridge and Fox, 2006; Giorgino et al., 2005) address
some of the limitations of finite state dialogue management by enabling
a more flexible dialogue. Frame-based systems enable the user to provide
more information than required by the system’s question, while the
conversation system keeps track of what information is required and
asks questions accordingly; and (3) Agent-based systems (Bing-Hwang
Juang and Furui, 2000; Young et al., 2013; Radziwill and Benton, 2017;
Miner et al., 2016) that are able to manage complex dialogues, where
the user can initiate and lead the conversation.

Agent-based methods for dialogue management are typically data
driven statistical models trained on corpora of real human-computer
dialogues, offering robust contextual natural language understanding
across multiple turns of a conversation, as well as better scalability and
greater scope for adaptation. Hence, these are ideally suited for dialogue
state tracking for iterative data exploration driven by the user, allowing
estimation of the current state of data exploration based on what the
user has already explored. Deep learning based techniques for dialogue
state tracking fall under the category of these agent based systems. Some
of the major challenges associated with state tracking based on trained
models include dealing with unseen mentions i.e., utterances not seen by
the state tracking model during training, domain adaptation to account
for lexical variations, and building the appropriate semantic context to
represent the conversation state for more complex dialogue domains.
Next, we describe a few deep learning based models and systems for
state tracking that address these challenges.
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Dealing with Unseen Mentions. Traditional agent-based ma-
chine learning models that employ generative and discriminative ap-
proaches for dialogue state tracking are unable to deal with unseen
mentions (Williams and Young, 2007) due to their reliance on a fixed
underlying schema/ontology. On the other hand, reading comprehension-
based techniques require the determination of answer spans within a
given piece of text. These models are developed in a manner that a fixed
ontology for an answer is not imperative. Hence, they do not require a
fixed vocabulary for response generation (Reddy et al., 2019).

Taking advantage of these developments in reading-comprehension-
based techniques, Gao et al. (2019) formulate the dialogue state tracking
problem as a reading comprehension task and propose an attention-
based neural network model that derives the appropriate slot values
(mappings to schema or ontology) from a conversation. More specifically
it employs three sub-models to accomplish this task: (1) The slot carry
over model, that predicts the population of a slot value from the previous
conversational turn (context). (2) The slot type model, that predicts
whether the slot value is a named entity found within the dialogue,
and (3) the slot span model, that predicts the span of the slot value
identified in the dialogue.

Rastogi et al. (2017) propose a scalable architecture for handling
entities not seen during training. Instead of representing the dialogue
state as a distribution over the value set for each slot, pre-specified
in a fixed ontology, they choose a deep learning based approach that
represents slots with large or unbounded sets of possible values. The
proposed dialogue state tracking model estimates a set of slot value
candidates based on the local conversation context, and can incorporate
external knowledge sources. Operating on these candidates instead of a
fixed ontology, allows dealing with unseen mentions and scales dialogue
state tracking to much larger and richer datasets.

Domain Adaptation for Lexical Variations. To address the
problem of linguistic variability across different domains, deep learning
approaches for dialogue state tracking focus on a tight coupling between
language understanding and state tracking. RNN (Sherstinsky, 2020)
based models such as (Henderson et al., 2013) and (Henderson et al.,
2014) provide a tight integration between the language understanding
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provided by conversational semantic parsing and state tracking across
multiple turns of conversation. They have been shown to improve upon
more traditional Bayesian approaches (Thomson and Young, 2010).
These models can handle language variability through the provision
of dictionaries that capture domain specific lexical and morphological
variations. Although these dictionaries handle domain adaptation well,
these approaches do not scale well to more complex and larger dialogue
domains.

Mrksic et al. (2016) address the problem of adaptation to larger
and more complex dialogue domains by using neural dialogue models to
avoid the need for manual dictionaries to match the lexical variations.
Their proposed model uses pre-trained language models to generate
word embeddings that are used for identifying the entity types (schema
mapping) to populate and track the appropriate dialogue state. The
language models do away with the requirement of exact matching of
words and their lexical variations while catering to the different linguistic
variations in user utterances while exploring data from different domains.

Deep Domain Specialization. Although the above mentioned
systems that provide domain adaptation for lexical variations, enable
dialogue state tracking across larger and multiple domains, they are
mostly trained over open domain datasets and are generally domain
agnostic. Models trained over such domain agnostic data lack the deep
domain specialization required in several real world use cases. These
include conversational systems for many domain-specific data sets and
knowledge bases, that are carefully curated from various data sources,
and serve as a valuable reference for professionals in different domains.
Building conversational interfaces for such datasets requires a system to
have deep domain specialization for natural language understanding to
identify intents and enable mapping of domain-specific user utterances
to appropriate entities in the underlying knowledge base or dataset
(Domain specific slot filling).

Quamar et al. (2020a) propose an ontology-based conversational
system for domain-specific knowledge bases. Their proposed system
exploits the domain knowledge captured in an ontology representing
the knowledge base schema in terms of relevant entities as ontology
concepts, their linguistic variations as domain specific synonyms and
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relationships to other entities (hierarchical, functional, unions, etc.).
They use a tightly coupled semantic parsing and dialogue state tracking
architecture to identify user intents as patterns (sub-graphs) over the
ontology, and domain-specific entities in user utterances as ontology
concepts. More specifically, they use an Ontology Page Rank algorithm
to identify key concepts that are often the main focus of user queries and
dependent concepts that can be mostly seen as complex attributes of the
key concepts. They define several query patterns over these identified
key and dependent concepts in the ontology as intents. They develop
a framework that uses this information in the ontology to bootstrap
the intents, entities as artifacts of the conversational interface and
allows for incorporating feedback from domain experts to further refine
the identified intents/patterns and entities. Since intent identification
from user utterances is modelled as a classification task, the proposed
framework also automatically generates training samples for training a
neural network-based intent classifier.

4.2.2 Structured Query Generation

Structured query generation is one of the actions that the dialogue
system needs to take to reach a particular dialogue state. This happens
as a result of state tracking in response to a user query, or a set of queries
to enable retrieval of results from an external knowledge source. Several
different techniques could be employed to generate structured queries
like SQL. Simple template-based mechanisms map each identified intent
to a structured query template and use appropriate entities tracked in
the dialogue state to fill in the template to generate an executable query
(Quamar et al., 2020a). This is suitable when the number of intents are
small and can lend themselves to a manual/semi-automated mapping
of intents to structured query templates.

Many of the deep learning text-to-SQL techniques (discussed in Sec-
tion 3.2) are also applicable in the conversational settings for generating
structured queries like SQL in response to natural language utterances
issued by the user and tracked by the dialogue system. However, the
conversational setting has the added benefit of allowing the system to
incorporate user feedback to refine the structured query if required.
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DialSQL (Gur et al., 2018) is a dialogue-based structured query gen-
eration framework that leverages a human-in-the-loop to boost the
performance of existing structured query generation algorithms via user
interaction. They introduce a goal-oriented dialogue model that inter-
acts with users to extract and correct potential errors in the generated
structured queries. DialSQL is based on a hierarchical encoder-decoder
architecture and uses attention and pointer mechanisms. The model
encodes each turn of conversation and uses a RNN network across
turns in the dialogue history. The output of the RNN network is then
used to predict the error category in terms of the SQL clause such as
selection, projection, or aggregation error. A second RNN, whose output
is conditioned on the identified error category, is used to predict the
error span. Lastly, these candidate choices are decoded from the error
category and span representations as potential errors in the generated
SQL query. Users are then asked for validation via simple multi-choice
questions and user feedback is used to revise the query accordingly.

Zhang et al. (2019) propose SQL query generation by editing the
query in the previous turn. The previous query is first encoded as a
sequence of tokens, and the decoder computes a switch to change it
at the token level. This sequence editing mechanism models token-
level changes and is thus robust to error propagation. Furthermore,
to capture the user utterance and the complex database schemas in
different domains, an utterance-table encoder is used based on BERT
(Devlin et al., 2019) to jointly encode the user utterance and column
headers with co-attention, and a table-aware decoder is adopted to
perform SQL generation with attentions over both the user utterance
and column headers.

Lyons et al. (2016) propose Echo Query, that allows querying
databases using a hands free voice based natural language interface for
dialogue interaction. It is built using the Amazon Alexa Voice Service
(Amazon, 2018). It uses user feedback for query clarification and itera-
tively builds and personalizes the system vocabulary through multiple
user interactions. The system focuses on natural language to SQL trans-
lation for simple SELECT, PROJECT, JOIN queries with filters and
GROUP BYs.
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Having described a number of different techniques for generating
structured queries, it is important to note that evaluating the quality
of generated SQL or structured queries in terms of correctness, consis-
tency and confidence is still an open challenge, with on going work on
developing relevant benchmarks for the same. We discuss some of these
issues in Section 5 and Section 6.

4.2.3 Natural Language Response Generation

The third and last task in dialogue management is natural language
response generation. Natural language response generation is condi-
tioned on the input user utterance (identified intent, entities using
conversational semantic parsing), the conversational context in terms of
information persisted from prior queries (state tracking), the resulting
action in terms of a structured query executed against an external data
and the data retrieved as a result of such a structured query execution.
Natural language response generation is thus tightly coupled and de-
pendent on the other tasks of dialogue management. Next, we describe
some of the techniques for generating natural language responses in
conversational systems.

NL Response Generation using Seq2Seq Models. Deep learn-
ing systems use the contextual information captured using dialogue
state tracking as input to the encoder, while the decoder is used to
generate the next dialogue response in natural language. Wen et al.
(2015) propose an NLG technique for generating the next dialogue
response using a semantically conditioned LSTM that learns from input
data by jointly optimizing sentence planning and surface realization,
i.e. the task of generating the linear form of a text following a given
grammar. Typically, surface realization models consist of a cascade
of complex neural network-based sub-modules, each responsible for a
specific sub-task. The proposed generation model by Wen et al. (2015),
is a RNN based encoder-decoder architecture where the input tokens
are 1-hot encoded and the output sequence of tokens are lexicalised to
form the required NL utterance. The system uses Semantic Controlled
LSTM cells where the upper part is a traditional LSTM cell responsible
for surface realisation, while the lower part is a sentence planning cell
based on a sigmoid control gate and a dialogue action (DA).
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Seq2Seq models with attention have also been used for next dialogue
generation in conversational systems (Dusek and Jurcicek, 2016). The
input to their generator are actions such as inform or request, along with
one or more attributes (slots), and their values, providing context to
the actions generated by the dialog state tracking model. The generator
produces deep syntax trees that provide the syntactic shape of the
output corresponding to the sentence planning NLG stage. These trees
are then linearized to strings using a surface realizer. The actions, deep
syntax trees, and corresponding sentences are represented as a sequences
of tokens as input to an RNN based Seq2Seq generator model with
attention. The model uses an encoder-decoder architecture with beam
search to generate the natural language output. Finally a reranker
ensures that the output strings correspond semantically to the input
action. For e.g. for an inform action about a particular entity X could
lead to a NL sentence generation such as X is a restaurant.

NL Response Generation using Language Models. As de-
scribed in Section 2.2, generative pre-training based language models like
GPT-2 trained on very large datasets have shown remarkable success
in capturing long term dependencies in textual data and generate text
with consistent content and style. This makes them an attractive choice
for neural response generation for conversational systems. Inspired by
the success of GPT-2, DialoGPT (Zhang et al., 2020a) exploits GPT-2
to overcome the challenges of conversational neural response genera-
tion i.e. generating natural language text that is relevant to a given
prompt. DialoGPT is formulated as an autoregressive language model
(a language model which predicts future values from past values) and
employs a multi-layer transformer architecture which enables long-term
dependency information to be better preserved over time. It is trained
on dialogue sessions from Reddit. DialoGPT models the multi-turn
conversational sessions as a long concatenated text of dialogue turns
and frames the generation task as language modeling. The conditional
probability of generating a target response given the sequence of di-
alogue turns is modelled as a product of conditional probabilities of
generating individual target tokens given the sequence of dialogue turns.

TOD-BERT (Wu et al., 2020) uses pre-trained language models,
like (BERT) trained specifically on multi-turn task oriented dialogue
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datasets and exploits a contrastive objective function. A Contrastive
objective function allows models to learn semantic representations of
input data such that two similar items are placed closer together in
the latent space while two dissimilar items would be placed further
apart. TOD-BERT uses the contrastive objective function for training
the model to simulate the response selection task i.e. representations of
an input and its relevant response are closer together than irrelevant
responses. It uses a masked language model and a deep bidirectional
transformer encoder wherein the dialogue behavior is modelled using
additional tokens that distinguish the user and system utterances. Using
the above described architecture and additional tokens, TOD-BERT
has been shown to do well for the task of appropriate response selection
based on the dialogue state.

ConveRT (Henderson et al., 2019a), similar to DialoGPT, is also
trained on conversational sessions (Reddit data) for the general purpose
response selection task i.e., choosing the most appropriate response
given the dialogue history. This is followed by model fine-tuning using
additional neural network layers for task-specific response selection.
ConveRT employs a dual-encoder pre-training architecture that leverage
sub-word representations, transformer style-blocks and quantization.
The dual-encoder architecture consists to two parallel encoders with
shared parameters, one for the input sub-words and one for the response
sub-words. Each encoder transforms the corresponding sub-words into
embeddings using a pre-trained language model which are then passed
through a series of transformations based on a standard transformer
architecture wherein positional encodings are added to the sub-word
embedding inputs before going through the self-attention blocks. The
final layer in both encoders is linear which maps the input text and
response text to L2-normalized vector representations. Cosine similarity
is then computed between input and response sub-words with the aim of
keeping a pair of input and its relevant response vectors closer together
in latent space and irrelevant responses further apart from the input
vector. Such dual encoders have been shown to perform extremely
well for response selection/generation tasks in conversational systems
(Henderson et al., 2019b) for data exploration.
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4.3 Conversational Business Intelligence

In this section, we describe conversational Business Intelligence (BI)
systems which play a critical role in decision making in the enterprise.
These interfaces democratize access to valuable business insights from
the underlying data for a wide range of personas including non-technical
business owners, executives and data scientists, allowing them to explore
data, investigate key performance indicators using natural language
queries without relying on external technical expertise. We begin with
describing some of the challenges in building conversational BI systems.
Next we explore the support for natural language interfaces in existing
commercial BI tools and platforms and then describe some conversa-
tional interfaces specifically built for supporting BI applications.

Building effective conversational systems for business intelligence
applications requires: (1) A rich semantic data model that enables
natural language understanding in terms of the entities, relationships
and associated semantics that are relevant for typical BI workloads
such as measures (quantifiable attributes), dimensions (categorical at-
tributes), their hierarchies, relevant aggregations as well as relationships
between the measures and dimensions. Such information is typically
available in an OLAP (Online Analytical Processing) cube definition
(Chaudhuri and Dayal, 1997) over the underlying data. (2) Building the
capabilities of the conversational system through suitable models and
training data to recognize, interpret and respond to typical BI query
patterns/operations as well as the ability to recognize and support
OLAP sessions, the typical unit of data analysis for BI use cases. (3)
Integration with the underlying BI platforms through generation of
appropriate structured queries or API calls to provide a response to the
user utterance, often, in terms of a visualization.

Existing business intelligence tools, such as Microsoft’s (Power
BI Platform 2021), Tableau’s (Ask Data | Tableau Software 2021),
(MicroStrategy 2021), Amazon’s QuickSight (Amazon, 2021), Google’s
Looker (Google, 2021a) and IBM’s (Cognos Assistant 2021), support
some form of natural language interfaces to their respective BI systems.
Most of these systems typically support a fixed set of query patterns.
Some of these systems also help the users to complete their current query
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with a simple list of query suggestions. These systems rely on the user to
formulate a one-shot query by selecting from a large number of options
and parameters. The user often gets to an appropriate visualization
with limited system support from a two-way dialogue.

Kuchmann-Beauger et al. (2013) propose QUASL, a framework for
question answering over a multi-dimensional model targeting the BI use
cases for the enterprise. The framework requires an explicit mapping
(Schema Linking) between the entities expected in the natural language
queries and the entities in the underlying data relevant for the BI
queries. The framework, however, lacks the ability to clarify ambiguity
in natural language and also does not support the use of context across
multiple turns of conversation, and hence is limited in its ability to
recognize analytical tasks typically carried out in OLAP sessions.

Francia et al. (2020) propose an approach that utilizes a Knowledge
Base that stores the OLAP cube definition meta-data and values. More
specifically, these include measures, dimensions, their hierarchies, aggre-
gation operators etc. The information in the knowledge base is referred
to by the system for entity identification (slot filling), query intent inter-
pretation as well as structured query generation. Additional synonyms
are added using open data ontologies for better understanding of the
natural language queries and accommodating linguistic variability. The
conversational interface is also used to clarify any ambiguities in the
user query. The system however lacks in modeling the BI query patterns
observed in typical workloads and relies on intention keywords such
as SELECT, GROUPBY, FILTER, etc., in user utterances. Further,
there is no specific dialogue support for handling commonly observed
BI operations such as pivot, drill-down across turns of conversation.

Quamar et al. (2020b) propose an ontology-driven conversational
system for business intelligence (BI) applications. Figure 4.2 shows
the workflow for building the conversational system. A BI ontology is
used to provide deep domain specialization, reasoning capabilities as
well as rich semantics over the domain schema in terms of measures,
dimensions, their hierarchies and relationships as defined in the OLAP
cube definition over the raw data.
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Figure 4.2: An ontology driven approach for conversational BI systems (Quamar
et al., 2020b).

Figure 4.3: Captured measure hierarchy(Quamar et al., 2020b).

In addition, the ontology is further enriched by providing a logi-
cal grouping of measures and dimensions under higher-level concepts
(meta-concepts) that provide richer semantics for natural language
understanding (Figure 4.3). This enrichment is done either manually
with the help of domain experts or learnt from the underlying data
distributions using ML/deep learning techniques. The BI ontology pro-
vides domain-specific natural language understanding capabilities for
the conversational system for identifying entities (slot filling) in terms
of measures, dimensions, their hierarchies and intent in terms of BI
workload patterns over these entities and relationships between them.
Figure 4.4 shows an example BI workload pattern that compares two
measures along a particular dimension. Each such pattern is identified
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Figure 4.4: BI comparison pattern (Quamar et al., 2020b).

as an intent. The framework maps these BI workload patterns onto the
BI ontology and automatically generates training samples to train deep
neural networks for intent classification.

The system also provides a tight coupling between conversational
semantic parsing for natural language understanding and domain specific
dialogue state tracking. The dialogue state tracking supports the desired
interaction for the application in terms of BI operations conditioned on
identified intent and entities. This requires the state tracking model to
keep track of the state of all required entities for a given intent which is
modelled as a BI access pattern. If the current data exploration context
contains all the required entities (such as measures, dimensions, filters,
etc.) for the identified BI pattern in the user’s utterance, the state is
marked complete and further action can be initiated in terms of forming
a structured query and retrieving results. Further, the dialogue exploits
context over multiple turns of interactions with the user to support
OLAP sessions and the typical operations carried out within such as
drill-down, roll-up, pivot, etc. Interaction with the external data source
(or BI platform) is done through generated structured queries using a
template based mechanism (Section 4.2.2) that exploits BI patterns to
retrieve data in response to user/application queries. Each BI pattern is
mapped to a structured query template. The template is populated with
the identified entities (measures, dimensions, filter values, aggregation
ops, etc.) to generate the exact structured query (such as a SQL query)
that is executed against the BI platform. The authors propose an
automatic bootstrapping mechanism that uses the ontology to generate
the intents, their training examples, entities and inputs for building
the dialogue to automate the population of the conversational interface
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artifacts in a domain agnostic way. This provides a repeatable process
to quickly build a conversational BI systems for different domains. The
system can be further refined using user feedback and inputs from
Subject Matter Experts (SMEs).

Summary

In this section, we describe conversational interfaces to data which are
rapidly gaining popularity as an intuitive technology to democratize
access to data. We look at the salient differences in the natural language
understanding component of the conversational interfaces compared
to text-to-SQL systems. We introduce the concept of conversational
semantic parsing that caters to the two-way nature of conversation and
provide examples of several state-of-the-art systems that use deep learn-
ing approaches for the same. We also introduce dialogue management
and its constituent components such as dialogue state tracking as a
mechanism for tracking the current state of data exploration given the
prior history of queries issued by the user in a data analysis session. We
discuss techniques for structured query generation and natural language
response generation along with examples of several works in the area
that use different techniques to implement the required functionality.
Finally, we describe conversational business intelligence as a use case
for conversational interfaces to data tailored for BI applications.



5
Benchmarks and Evaluation Techniques

Evaluating natural language interfaces to data is a non-trivial task
(Kaufmann and Bernstein, 2010; Asakura et al., 2018). With the current
abundance of solutions that target this problem, a systematic evaluation
of existing approaches becomes more and more a necessity. The first
steps towards this goal, WikiSQL (Zhong et al., 2017) and Spider (Yu
et al., 2018b), have been very well-received by the community, focusing
mostly on the learning-based approaches. Recent efforts also focus
on providing data sets for evaluating multi-turn and conversational
interfaces to data (Yu et al., 2019b; Yu et al., 2019a).

In this section, we present some popular benchmarks for natural lan-
guage interfaces to data, roughly in chronological order. For more details
and more existing benchmarks, we refer the reader to CBench (Orogat
et al., 2021) and THOR (Gkini et al., 2021).

5.1 WikiTableQuestions

WikiTableQuestions (Pasupat and Liang, 2015) is a benchmark for
question answering on semi-structured HTML tables. The data set1

1https://github.com/ppasupat/WikiTableQuestions
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contains 2,108 tables from a large variety of topics and 22,033 natural
language questions with different complexity. Each question comes with
a table from Wikipedia. Given the question and the table, the task is to
answer the question based on the table. The whole data set is divided
into 14,152 training examples with natural language questions, the
table used to answer the question and the answer. There are 4,344 test
examples where the table to answer these questions is not previously
seen in the training examples. Additionally, the data set provides 3,537
examples targeted as the development data, where the tables to answer
the questions are seen in the training data.

5.2 WikiSQL

WikiSQL, released along with Seq2SQL (Zhong et al., 2017) covered
in Section 3.2, is one of the earliest and most popular benchmarks in
the field, containing 80,654 pairs of natural language questions and
SQL queries which are manually annotated (via crowd-sourcing, using
Amazon Mechanical Turk) and distributed across 24,241 Wikipedia
tables. As in WikiTableQuestions, each example in WikiSQL consists of
a natural language query, a table and a SQL query corresponding to the
natural language query. The examples are randomly split into train, dev,
and test sets, making sure that each table appears in exactly one split.
In addition to the examples, WikiSQL also provides a corresponding
database and query execution engine. The large volume of data enables
machine learning based systems to train their model. WikiSQL maintains
a leaderboard on its github page2, reporting the top-ranking supervised
and weakly supervised systems.

5.3 Spider

Spider (Yu et al., 2018b) is probably the most popular data set for
testing the accuracy of text-to-SQL tasks across domains. It consists
of 10,181 natural-language questions and 5,693 distinct SQL queries
across 200 database schemas with instances, each with multiple tables,
covering 138 different domains. Those queries cover a wide spectrum of

2https://github.com/salesforce/WikiSQL

https://github.com/salesforce/WikiSQL
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complex SQL queries, involving joining and nested queries. As shown in
a recent study (Sen et al., 2020), as well as in the constantly updated
leaderboard chart on Spider’s website3, the variety of the domains as
well as the queries in SPIDER present a non-trivial challenge to the
accuracy of existing systems, with the highest-scoring ML-based system
of the leaderboard (at the time of writing this monograph) reporting
an accuracy of 75.1%.

5.4 SParC

Semantic Parsing in Context (SParC) benchmark (Yu et al., 2019b)
is a context-dependent, multi-turn version of the Spider data set. It
consists of over 4,000 coherent question sequences4, obtained from user
interactions with 200 complex databases over 138 domains (as in Spider).
In order to ensure that each question sequence is relevant in subject
and this way, construct meaningful queries, SParC uses questions from
the Spider dataset as the thematic guidance. Each question sequence
is based on a question in Spider and consists of inter-related questions
to obtain the information demanded by different goals. The generated
questions are then translated to SQL queries. To ensure correctness, all
SQL queries were executed on the same RDBMS (Sqlite) and in order
to make the evaluation more robust, the same annotation protocol as
the one followed in Spider was adopted, such that the same SQL query
pattern is used when multiple queries, equivalent to each other, could
be considered.

5.5 CoSQL

CoSQL (Yu et al., 2019a), standing for Conversational text-to-SQL5

is a dialogue version of the Spider and SParC data sets. It consists of
more than 30k turns and 10k annotated SQL queries, obtained from
the same databases used in the Spider and SParC, following a multi-
turn Wizard-of-Oz setup (Budzianowski et al., 2018). In this setup,

3https://yale-lily.github.io/spider
4https://yale-lily.github.io/sparc
5https://yale-lily.github.io/cosql

https://yale-lily.github.io/spider
https://yale-lily.github.io/sparc
https://yale-lily.github.io/cosql
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crowd-sourced workers act as database users, while students proficient
in SQL act as database experts. Each dialogue is a simulation of a real
database querying scenario with a user trying to explore a database
with a pre-defined goal in mind, while an expert retrieves answers with
SQL, clarifying those questions that are ambiguous and labeling other
questions as unanswerable.

5.6 LC-QuAD

The Large-Scale Complex Question Answering Dataset (LC-QuAD)
2.0 (Dubey et al., 2019) is a dataset consisting of 30,000 pairs of questions
and their corresponding SPARQL queries expressed over Wikidata
and DBpedia. The questions are semi-automatically created from 22
unique template queries on Wikidata, which are later “verbalized” (i.e.,
expressed in natural language) and paraphrased via crowd-sourcing,
covering 21,258 entities and 1,310 predicates. As in the case of other
benchmarks, the project’s website6 maintains a leaderboard with systems
having used this dataset.

5.7 FIBEN

FIBEN (Sen et al., 2020) is a benchmark dataset that emulates a
financial data warehouse. It consists of 300 natural language queries
and their corresponding SQL queries, defined over the FIBEN schema.
The schema conforms to a union of two standard finance ontologies:
Finance Industry Business Ontology7 and Finance Report Ontology8. It
contains information about public companies from a variety of industry
sectors, their officers, and financial metrics. The FIBEN schema also
contains transactions over holdings and securities provided by public
companies, where each transaction is linked to a customer’s account
(containing securities held, buying and selling of securities).

The benchmark includes a mix of 130 single-SQL-block queries, and
170 nested queries that are further classified into four nested SQL types,

6http://lc-quad.sda.tech/
7https://spec.edmcouncil.org/fibo/
8http://xbrl.squarespace.com/financial-report-ontology/

http://lc-quad.sda.tech/
https://spec.edmcouncil.org/fibo/
http://xbrl.squarespace.com/financial-report-ontology/
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as defined in (Kim, 1982). Apart from the query examples, FIBEN’s
website9 also contains the necessary files (DDL script and CSV instance
data) to load the FIBEN benchmark data on a relational database.

5.8 CBench

The Carleton Benchmark (CBench) Suite (Orogat et al., 2021) is a
framework for evaluating question-answering systems over a target
knowledge graph (e.g., DBpedia, Freebase, Wikidata), by utilizing ex-
isting benchmark datasets that mostly target SPARQL queries (e.g.,
LC-QuAD). Since different benchmarks may target different versions
of the same knowledge graph, CBench employs a Benchmark Updater
module that queries the latest version of the target knowledge graph and
retrieves the latest answers. In addition to evaluating question-answering
systems, CBench can be also used to analyze other benchmarks. For
example, it counts the number of questions per dataset that fall under
a specific category, such as How-questions (i.e., questions starting with
the word “how”), Wh-questions (i.e., questions starting with “what”,
“when”, “who”, etc), and yes/no questions. It also analyzes the fre-
quency of certain keywords and operators in the queries (e.g., SELECT,
DISTINCT, GROUP BY, and FILTER), as well as the syntactic and
semantic similarity of the queries (i.e., how similar are the embeddings
of words used in the queries). CBench is publicly available10.

5.9 THOR

THOR (Gkini et al., 2021) is a text-to-SQL benchmark consisting of
241 queries from 3 datasets (IMDB, MAS, YELP), and the queries are
split into 17 expressivity-based categories (e.g., based on whether they
involve joins, nesting, group by, aggregates, negation). In addition to
effectiveness evaluation, this benchmarking effort also targets to evaluate
the efficiency of systems, involving resource consumption, percentage
of CPU utilization, scalability, and number of SQL I/Os. To make the
efficiency comparison fair, the authors map each evaluated system to a

9https://github.com/IBM/fiben-benchmark
10https://github.com/aorogat/CBench

https://github.com/IBM/fiben-benchmark
https://github.com/aorogat/CBench
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common, generalized reference architecture. Thor’s architecture consists
of a Parser, responsible for the semantic tagging task (Section 2.3),
Indexes and Knowledge Bases, used for the data modeling (Section 2.1),
an Entity Mapper and an Interpretation Generator (Section 3.1), and
finally a SQL Translator and Executor for generating and running the
SQL queries over the underlying database. The dataset and evaluation
code of this benchmark are publicly available11.

Summary

In this section, we present nine popular benchmarks for natural language
interfaces to data, from the least to the most recent. Arguably, the most
popular benchmark at the time of writing this monograph is Spider (Yu
et al., 2018b), which contains queries from a big diversity of domains.
It also maintains a leader board of best-performing ML systems; a very
nice idea to encourage competition and push the state-of-the-art systems
to improve. We observe that earlier benchmarks contain questions that
are relatively simple (e.g., requiring no or few joins and nested queries),
while later benchmarks are taking a deeper dive into query complexity.
FIBEN (Sen et al., 2020), for example, focuses particularly on nested
queries, while THOR (Gkini et al., 2021) further divides queries into
multiple expressivity groups, based on whether they involve nesting,
aggregates, negation, etc. Yet, we believe that there is still room for
improvement, as we discuss in the next section.

11https://github.com/athenarc/THOR-Text2SQLBenchmarking

https://github.com/athenarc/THOR-Text2SQLBenchmarking
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Open Challenges

Despite the recent advances in the area of natural language interfaces,
there are still many open research challenges. In addition, for this
technology to be adopted and widely used by enterprises, there are still
several barriers to overcome. In the following, we discuss these open
research challenges and adoption barriers.

Generalizability and domain adaptation. Most of the proposed
systems work reasonably well for benchmarks like WikiSQL, and the
data sets they have been built for, but they do not adapt well to new
data sets. There has been an increasing focus on domain adaptability
but more work is needed for general purpose solutions that work well
for any domain, and do not need lots of specialization or training.

Complexity of queries. As natural languages are used for more
complex tasks, such as data analytics, there is a need for NLIs to
produce more complex SQL queries, involving multiple sub-queries. First,
detecting whether a natural language query requires to be translated
to a nested structured (SQL) query is non-trivial due to non-obvious
linguistic patterns and inherent ambiguities in the natural language
queries. Second, building a nested query requires identifying proper
sub-queries and figuring out the correct conditions to join or combine
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the sub-queries to produce the correct query results. Hence, building
NLIs that can handle both the user utterance complexity as well as can
produce complex queries is still an open challenge that requires further
research and development.

A promising approach to handle complexity is to break the query into
smaller pieces, which can be interpreted into simpler structured queries.
Iyyer et al. (2017) propose DynSP, a dynamic neural semantic parsing
framework for answering sequences of simple related questions. However,
they do not actually address the problem of breaking the complex queries
into a sequence of simpler queries and use a crowd sourcing approach
to manually do this important task. Designing techniques and systems
for identifying the complexity of the query, and breaking it into a set of
simpler and smaller queries is one of the key challenges towards building
effective natural language interfaces to data and their adoption into
main stream analytics.

Hybrid NLQ approaches. Neither rule-based approaches nor the
ML/DL-based text-to-SQL approaches can tackle all the challenges in
building natural language interfaces to data. In general, the rule-based
approaches provide better accuracy and domain adaptability while
the text-to-SQL approaches offer greater flexibility (recall) in terms of
the natural language queries, as they are more robust to variations in
linguistic patterns. As discussed in Section 3.3, there exist a few hybrid
approaches that attempt to leverage the best from both worlds to build
effective NLIs. However, these approaches are in their nascent stage
and further research is needed to explore these hybrid approaches.

Training examples. Text-to-SQL systems and emerging hybrid
approaches rely on ML/DL models to interpret user intent. The more
variety of queries the system needs to handle, the more training ex-
amples the system needs. Generating such training data for ML/DL
models for NLI tasks is both time-consuming as well as labor intensive.
Conversational analytical interfaces can be built by exploiting common
analytics query patterns, and these patterns can also be used to generate
training examples (Quamar et al., 2020b).

Trust and explainability. It is vital for users to trust the NLI
solution that their utterances are interpreted correctly. This is even
more pronounced in analytics use cases where the user gets charts and
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graphs depicting trends as a result. NLG techniques are used in most of
these systems to tell the user how their queries are interpreted to build
trust.

As part of the broader topic of responsible data management, along
with algorithmic fairness and transparency (Stoyanovich et al., 2020;
Stoyanovich et al., 2016), the importance of explainability has emerged
as a key issue in building natural language interfaces. In particular, deep
learning-based natural language interfaces to data often come at the
expense of models becoming less interpretable, which may erode trust
in these systems. Natural language interfaces need to be integrated with
major explainability techniques, such as feature importance, provenance,
declarative induction, as well as the most commonly used explainability
and visualization techniques, operations used to generate explanations
in the NLP literature (Danilevsky et al., 2020), in order to provide
reasonable explanations through text generated using NLG techniques.
Explanations can be further distinguished into those answering “HOW”
and those answering “WHY” (or even “WHY NOT”) questions (Preece,
2018). The former type of questions mostly refer to understanding the
workings of a system that led to an answer (e.g., a trace of the rules
triggered to produce this answer), while the latter may further question
the reasoning process behind a provided answer, which leads to a what
is also referred to as causal understanding (Holzinger et al., 2019).

Conversational data analysis. There are several challenges for
building conversational interfaces for data exploration and analysis.
These include challenges in conversational semantic parsing, dialog
state tracking and dialog modelling using deep learning techniques
including pre-trained language models. Each of these building blocks
needs to address the challenges of scalability, low latency as well as
high accuracy. Training models for these building blocks requires a
large amount of conversational training data. These conversational data
sets are not readily available and require a lot annotation effort to
make them useful. This is further aggravated by issues arising from
domain adaptability. Building domain-specific conversational interfaces
for exploring data is a major challenge where capturing the domain
semantics and incorporating that into the conversational system is non-
trivial. This includes understanding the entities of the domain and their
relationships, as well as the domain vocabularies and their synonyms.
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Benchmarks. We believe that the next step to follow up on the
benchmarking efforts mentioned in Section 5 is the inclusion of more
complex analytical queries in these benchmarks that will enable robust
testing of the rule-based approaches and further push the state-of-the-art
for text-to-SQL and hybrid approaches as well.

High precision. Natural language interfaces can democratize access
to data within an enterprise by enabling non-technical users to explore
the data easily. However, many enterprise applications require high
accuracy, and the current state-of-the-art approaches still cannot achieve
desirable levels. For natural interfaces to become widely adopted in
the enterprise more research is needed to increase the precision while
maintaining high recall for both simple and complex queries.



7
Conclusion

Natural language interface to data has been an active area of research
for more than a decade (Özcan et al., 2020; Li and Rafiei, 2017; Affolter
et al., 2019; Katsogiannis-Meimarakis and Koutrika, 2021b; Gkini et al.,
2021). With recent advances in NLP technologies, not only research
in this field has seen a resurgence, but also practical solutions started
to appear in commercial products (Ask Data | Tableau Software 2021;
Power BI Platform 2021; Cognos Assistant 2021). In this monograph,
we review natural language interfaces to data, which include both
NLQ systems as well as conversational solutions. We describe various
technologies used in natural language interfaces, including semantic
tagging, language models, ontologies and semantic indexing techniques.

We describe many solutions that fall into two broad categories: rule-
based and text-to-SQL. The rule-based solutions utilize semantic indexes,
ontologies and knowledge graphs to identify entities in the user utterance,
correlate those entities with the elements in the database, identify a
meaningful relationship between them, and create an interpretation of
the user intent. Most rule-based systems use templates, grammars, or
rules to generate a SQL statement from this interpretation. Text-to-
SQL systems, on the other hand, use deep learning techniques, mostly
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variations of sequence-to-sequence transformers to translate a user
utterance into a SQL query in a holistic way. Some systems combine
multiple models for semantic tagging and interpretation steps. While the
rule-based systems capture the semantics and domain information better
than the text-to-SQL systems, the latter is more robust to language
variations. There is also an emerging third category of hybrid systems
which combine the strengths of rule-based techniques and text-to-SQL
systems for more robust and accurate interpretation.

We also discuss conversational systems to data analytics. Gartner
(Richardson et al., 2021) predicts that conversational interfaces will
replace dashboards in the future, with the consumer-focused, augmented
in context, conversational analytics experiences. We describe several
challenges in conversational data exploration, including conversational
semantic parsing, dialogue management, and structured query genera-
tion. By providing context across multiple turns of conversation, these
systems support data exploration in a natural way.

With all these research and development activity, it is important to
have benchmarks to track the progress of NLI systems and enable the
reproduction of results. As such, we also provide an overview of these
benchmarks, and discuss their strengths and shortcomings.

Natural language interface is still a developing technology where
the accuracy and precision of the solutions need improvement for wider
enterprise adaption. Another important impediment is the trust in the
interpretations, as well as the explainability of the produced queries.
There is also room for improving the complexity of both the input
user utterance, as well as the generated structured query. Nevertheless,
natural language interfaces democratize access to data for all users, and
we expect them to become more commonplace in the near future.



References

Abzianidze, L. and J. Bos. (2017). “Towards Universal Semantic Tag-
ging”. CoRR. abs/1709.10381.

Aditya, B., G. Bhalotia, S. Chakrabarti, A. Hulgeri, C. Nakhe, P.
Parag, and S. Sudarshan. (2002). “BANKS: Browsing and Keyword
Searching in Relational Databases”. In: VLDB. 1083–1086.

Affolter, K., K. Stockinger, and A. Bernstein. (2019). “A comparative
survey of recent natural language interfaces for databases”. The
VLDB Journal. 28(5): 793–819.

Aghajanyan, A., J. Maillard, A. Shrivastava, K. Diedrick, M. Haeger,
H. Li, Y. Mehdad, V. Stoyanov, A. Kumar, M. Lewis, and S. Gupta.
(2020). “Conversational Semantic Parsing”. CoRR. abs/2009.13655.

Ahmetaj, S., V. Efthymiou, R. Fagin, P. G. Kolaitis, C. Lei, F. Öz-
can, and L. Popa. (2021). “Ontology-Enriched Query Answering on
Relational Databases”. In: AAAI. 15247–15254.

Albawi, S., T. A. Mohammed, and S. Al-Zawi. (2017). “Understanding of
a convolutional neural network”. In: 2017 International Conference
on Engineering and Technology. 1–6.

Amazon. (2018). “Amazon Alexa”. url: https://developer.amazon.
com/alexa.

Amazon. (2021). “Amazon QuickSight”. url: https://aws.amazon.com/
quicksight/.

Apple. (2018). “Siri”. url: https://www.apple.com/ios/siri/.

399

https://developer.amazon.com/alexa
https://developer.amazon.com/alexa
https://aws.amazon.com/quicksight/
https://aws.amazon.com/quicksight/
https://www.apple.com/ios/siri/


400 References

Araci, D. (2019). “FinBERT: Financial Sentiment Analysis with Pre-
trained Language Models”. CoRR. abs/1908.10063.

Asakura, T., J. Kim, Y. Yamamoto, Y. Tateisi, and T. Takagi. (2018).
“A Quantitative Evaluation of Natural Language Question Interpre-
tation for Question Answering Systems”. In: The 8th Joint Interna-
tional Semantic Technology Conference. 215–231.

Asghar, N., P. Poupart, J. Hoey, X. Jiang, and L. Mou. (2017). “Affective
Neural Response Generation”. CoRR. abs/1709.03968.

“Ask Data | Tableau Software”. (2021). url: https://www.tableau.com/
products/new-features/ask-data.

Auer, S., C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. G.
Ives. (2007). “DBpedia: A Nucleus for a Web of Open Data”. In:
ISWC. 722–735.

Baader, F., I. Horrocks, C. Lutz, and U. Sattler. (2017). An Introduction
to Description Logic. Cambridge University Press.

Bahdanau, D., K. Cho, and Y. Bengio. (2015). “Neural Machine Trans-
lation by Jointly Learning to Align and Translate”. CoRR. abs/1409.
0473.

Baik, C., Z. Jin, M. J. Cafarella, and H. V. Jagadish. (2020). “Duo-
quest: A Dual-Specification System for Expressive SQL Queries”.
In: SIGMOD. 2319–2329.

Banaee, H., M. U. Ahmed, and A. Loutfi. (2013). “Towards NLG
for Physiological Data Monitoring with Body Area Networks”. In:
Proceedings of the 14th European Workshop on Natural Language
Generation. 193–197.

Basik, F., B. Hättasch, A. Ilkhechi, A. Usta, S. Ramaswamy, P. Utama,
N. Weir, C. Binnig, and U. Çetintemel. (2018). “DBPal: A Learned
NL-Interface for Databases”. In: SIGMOD. 1765–1768.

Bast, H. and E. Haussmann. (2015). “More Accurate Question Answer-
ing on Freebase”. In: CIKM. 1431–1440.

Beltagy, I., K. Lo, and A. Cohan. (2019). “SciBERT: A Pretrained
Language Model for Scientific Text”. In: EMNLP-IJCNLP. 3615–
3620.

Ben Abacha, A. and P. Zweigenbaum. (2015). “MEANS: A medical
question-answering system combining NLP techniques and semantic
Web technologies”. Inf. Process. Manage. 51(5): 570–594.

https://www.tableau.com/products/new-features/ask-data
https://www.tableau.com/products/new-features/ask-data


References 401

Bergamaschi, S., F. Guerra, M. Interlandi, R. T. Lado, and Y. Vele-
grakis. (2016). “Combining user and database perspective for solving
keyword queries over relational databases”. Inf. Syst. 55: 1–19.

Bethard, S., P. V. Ogren, and L. Becker. (2014). “ClearTK 2.0: Design
Patterns for Machine Learning in UIMA”. In: LREC. 3289–3293.

Beveridge, M. and J. Fox. (2006). “Automatic Generation of Spoken
Dialogue from Medical Plans and Ontologies”. J. of Biomedical
Informatics. 39(5): 482–499.

Bing-Hwang Juang and S. Furui. (2000). “Automatic recognition and
understanding of spoken language - a first step toward natural
human-machine communication”. Proceedings of the IEEE. 88(8):
1142–1165.

Bjerva, J., B. Plank, and J. Bos. (2016). “Semantic Tagging with Deep
Residual Networks”. CoRR. abs/1609.07053.

Blunschi, L., C. Jossen, D. Kossmann, M. Mori, and K. Stockinger.
(2012). “SODA: Generating SQL for Business Users”. PVLDB. 5(10):
932–943.

Brown, T. B., B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A.
Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M.
Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin,
S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I.
Sutskever, and D. Amodei. (2020). “Language Models are Few-Shot
Learners”. CoRR. abs/2005.14165.

Brunner, U. and K. Stockinger. (2020). “ValueNet: A Neural Text-to-
SQL Architecture Incorporating Values”. CoRR. abs/2006.00888.

Budzianowski, P., T. Wen, B. Tseng, I. Casanueva, S. Ultes, O. Ramadan,
and M. Gasic. (2018). “MultiWOZ - A Large-Scale Multi-Domain
Wizard-of-Oz Dataset for Task-Oriented Dialogue Modelling”. In:
EMNLP. 5016–5026.

Castro Ferreira, T., I. Calixto, S. Wubben, and E. Krahmer. (2017).
“Linguistic realisation as machine translation: Comparing different
MT models for AMR-to-text generation”. In: Proceedings of the 10th
International Conference on Natural Language Generation. 1–10.

Chaudhuri, S. and U. Dayal. (1997). “An Overview of Data Warehousing
and OLAP Technology”. SIGMOD Rec. 26(1): 65–74.



402 References

Chen, Y.-N., A. Celikyilmaz, and D. Hakkani-Tür. (2018). “Deep Learn-
ing for Dialogue Systems”. In: Proceedings of the 27th International
Conference on Computational Linguistics: Tutorial Abstracts. 25–31.

Cho, K., B. van Merrienboer, D. Bahdanau, and Y. Bengio. (2014).
“On the Properties of Neural Machine Translation: Encoder-Decoder
Approaches”. CoRR. abs/1409.1259.

“Cognos Assistant”. (2021). url: https://tinyurl.com/u3sdaxa.
Dai, Z., Z. Yang, Y. Yang, J. Carbonell, Q. Le, and R. Salakhutdinov.

(2019). “Transformer-XL: Attentive Language Models beyond a
Fixed-Length Context”. In: ACL. 2978–2988.

Danilevsky, M., K. Qian, R. Aharonov, Y. Katsis, B. Kawas, and P.
Sen. (2020). “A Survey of the State of Explainable AI for Natural
Language Processing”. CoRR. abs/2010.00711.

Dethlefs, N. (2014). “Context-Sensitive Natural Language Generation:
From Knowledge-Driven to Data-Driven Techniques”. Lang. Lin-
guistics Compass. 8(3): 99–115.

Devlin, J., M.-W. Chang, K. Lee, and K. Toutanova. (2019). “BERT:
Pre-training of Deep Bidirectional Transformers for Language Un-
derstanding”. In: NAACL. 4171–4186.

Dhamdhere, K., K. S. McCurley, R. Nahmias, M. Sundararajan, and
Q. Yan. (2017). “Analyza: Exploring Data with Conversation”. In:
IUI. 493–504.

Dong, L. and M. Lapata. (2016). “Language to Logical Form with
Neural Attention”. CoRR. abs/1601.01280.

Dozat, T. and C. D. Manning. (2016). “Deep Biaffine Attention for
Neural Dependency Parsing”. CoRR. abs/1611.01734.

Dubey, M., D. Banerjee, A. Abdelkawi, and J. Lehmann. (2019). “LC-
QuAD 2.0: A Large Dataset for Complex Question Answering over
Wikidata and DBpedia”. In: ISWC. Vol. 11779. Lecture Notes in
Computer Science. 69–78.

Dusek, O. and F. Jurcicek. (2016). “Sequence-to-Sequence Generation
for Spoken Dialogue via Deep Syntax Trees and Strings”. In: ACL.
45–51.

Fagin, R., P. G. Kolaitis, R. J. Miller, and L. Popa. (2005). “Data
exchange: semantics and query answering”. Theor. Comput. Sci.
336(1): 89–124.

https://tinyurl.com/u3sdaxa


References 403

Ferragina, P. and U. Scaiella. (2010). “TAGME: on-the-fly annotation of
short text fragments (by wikipedia entities)”. In: CIKM. 1625–1628.

Fitzpatrick, K. K., A. Darcy, and M. Vierhile. (2017). “Delivering
Cognitive Behavior Therapy to Young Adults With Symptoms of
Depression and Anxiety Using a Fully Automated Conversational
Agent (Woebot): A Randomized Controlled Trial”. JMIR Ment
Health. 4(2): e19.

Forney, G. (1973). “The viterbi algorithm”. Proceedings of the IEEE.
61(3): 268–278.

Francia, M., E. Gallinucci, and M. Golfarelli. (2020). “Towards Conver-
sational OLAP”. In: DOLAP@EDBT/ICDT. Vol. 2572. 6–15.

Gao, J., M. Galley, and L. Li. (2018). “Neural Approaches to Conversa-
tional AI”. CoRR. abs/1809.08267.

Gao, S., A. Sethi, S. Agarwal, T. Chung, and D. Hakkani-Tür. (2019).
“Dialog State Tracking: A Neural Reading Comprehension Ap-
proach”. CoRR. abs/1908.01946.

Garoufi, K. (2014). “Planning-Based Models of Natural Language Gen-
eration”. Language and Linguistics Compass. 8(Jan.).

Gatt, A. and E. Krahmer. (2018). “Survey of the State of the Art
in Natural Language Generation: Core Tasks, Applications and
Evaluation”. J. Artif. Int. Res. 61(1): 65–170.

Giorgino, T., I. Azzini, C. Rognoni, S. Quaglini, M. Stefanelli, R. Gretter,
and D. Falavigna. (2005). “Automated spoken dialogue system for
hypertensive patient home management”. International Journal of
Medical Informatics. 74(2): 159–167.

Gkini, O., T. Belmpas, G. Koutrika, and Y. E. Ioannidis. (2021). “An
In-Depth Benchmarking of Text-to-SQL Systems”. In: SIGMOD.
632–644.

Google. (2021a). “Google Looker”. url: https://www.looker.com/
google-cloud/.

Google. (2021b). “GoogleAssitant”. url: https://assistant.google.com.
Google. (2021c). “Lamda”. url: https://blog.google/technology/ai/

lamda/.
Guo, J., Z. Zhan, Y. Gao, Y. Xiao, J. Lou, T. Liu, and D. Zhang. (2019).

“Towards Complex Text-to-SQL in Cross-Domain Database with
Intermediate Representation”. CoRR. abs/1905.08205.

https://www.looker.com/google-cloud/
https://www.looker.com/google-cloud/
https://assistant.google.com
https://blog.google/technology/ai/lamda/
https://blog.google/technology/ai/lamda/


404 References

Gur, I., S. Yavuz, Y. Su, and X. Yan. (2018). “DialSQL: Dialogue Based
Structured Query Generation”. In: ACL. 1339–1349.

Hao, J., C. Lei, V. Efthymiou, A. Quamar, F. Özcan, Y. Sun, and
W. Wang. (2021). “MEDTO: Medical Data to Ontology Matching
Using Hybrid Graph Neural Networks”. In: SIGKDD. 2946–2954.

He, H. and J. D. Choi. (2019). “Establishing Strong Baselines for the
New Decade: Sequence Tagging, Syntactic and Semantic Parsing
with BERT”. CoRR. abs/1908.04943.

Henderson, M., I. Casanueva, N. Mrksic, P. Su, T. Wen, and I. Vulic.
(2019a). “ConveRT: Efficient and Accurate Conversational Repre-
sentations from Transformers”. CoRR. abs/1911.03688.

Henderson, M., I. Casanueva, N. Mrkšić, P.-H. Su, T.-H. Wen, and
I. Vulić. (2020). “ConveRT: Efficient and Accurate Conversational
Representations from Transformers”. In: EMNLP. 2161–2174.

Henderson, M., B. Thomson, and S. Young. (2013). “Deep Neural
Network Approach for the Dialog State Tracking Challenge”. In:
SIGDIAL. 467–471.

Henderson, M., B. Thomson, and S. J. Young. (2014). “Word-Based Di-
alog State Tracking with Recurrent Neural Networks”. In: SIGDIAL.
292–299.

Henderson, M., I. Vulic, D. Gerz, I. Casanueva, P. Budzianowski, S.
Coope, G. Spithourakis, T. Wen, N. Mrksic, and P. Su. (2019b).
“Training Neural Response Selection for Task-Oriented Dialogue
Systems”. CoRR. abs/1906.01543.

Herzig, J., M. Shmueli-Scheuer, T. Sandbank, and D. Konopnicki. (2017).
“Neural Response Generation for Customer Service based on Person-
ality Traits”. In: Proceedings of the 10th International Conference
on Natural Language Generation. 252–256.

Hochreiter, S. and J. Schmidhuber. (1997). “Long Short-Term Memory”.
Neural Computation. 9(8): 1735–1780.

Holzinger, A., G. Langs, H. Denk, K. Zatloukal, and H. Müller. (2019).
“Causability and explainability of artificial intelligence in medicine”.
Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 9(4).

Howard, J. and S. Ruder. (2018). “Universal Language Model Fine-
tuning for Text Classification”. In: ACL. 328–339.



References 405

Huang, Z., W. Xu, and K. Yu. (2015). “Bidirectional LSTM-CRF Models
for Sequence Tagging”. CoRR. abs/1508.01991.

Hui, B., X. Shi, R. Geng, B. Li, Y. Li, J. Sun, and X. Zhu. (2021).
“Improving Text-to-SQL with Schema Dependency Learning”. CoRR.
abs/2103.04399.

Hussain, S., O. Sianaki, and N. Ababneh. (2019). “A Survey on Con-
versational Agents/Chatbots Classification and Design Techniques”.
In: 946–956.

Hwang, W., J. Yim, S. Park, and M. Seo. (2019). “A Comprehensive Ex-
ploration on WikiSQL with Table-Aware Word Contextualization”.
CoRR. abs/1902.01069.

Iyyer, M., W.-t. Yih, and M.-W. Chang. (2017). “Search-based Neural
Structured Learning for Sequential Question Answering”. In: ACL.
1821–1831.

Jammi, M., J. Sen, A. R. Mittal, S. Verma, V. Pahuja, R. Anan-
thanarayanan, P. Lohia, H. Karanam, D. Saha, and K. Sankara-
narayanan. (2018). “Tooling Framework for Instantiating Natural
Language Querying System”. PVLDB. 11(12): 2014–2017.

Jiao, X., Y. Yin, L. Shang, X. Jiang, X. Chen, L. Li, F. Wang, and
Q. Liu. (2020). “TinyBERT: Distilling BERT for Natural Language
Understanding”. In: EMNLP. 4163–4174.

Joshi, M., D. Chen, Y. Liu, D. S. Weld, L. Zettlemoyer, and O. Levy.
(2019). “SpanBERT: Improving Pre-training by Representing and
Predicting Spans”. CoRR. abs/1907.10529.

Katsogiannis-Meimarakis, G. and G. Koutrika. (2021a). “A Deep Dive
into Deep Learning Approaches for Text-to-SQL Systems”. In: SIG-
MOD. 2846–2851.

Katsogiannis-Meimarakis, G. and G. Koutrika. (2021b). “Deep Learning
Approaches for Text-to-SQL Systems”. In: EDBT. 710–713.

Kaufmann, E. and A. Bernstein. (2010). “Evaluating the usability of
natural language query languages and interfaces to Semantic Web
knowledge bases”. J. Web Semant. 8(4): 377–393.

Kim, W. (1982). “On Optimizing an SQL-like Nested Query”. ACM
Trans. Database Syst. 7(3): 443–469.

Kim, Y. (2014). “Convolutional Neural Networks for Sentence Classifi-
cation”. In: EMNLP. 1746–1751.



406 References

Kim, Y., Y. Jernite, D. Sontag, and A. M. Rush. (2016). “Character-
Aware Neural Language Models”. In: AAAI. 2741–2749.

Koutrika, G., A. Simitsis, and Y. E. Ioannidis. (2006). “Précis: The
Essence of a Query Answer”. In: ICDE. 69–78.

Kuchmann-Beauger, N., F. Brauer, and M.-A. Aufaure. (2013). “QUASL:
A framework for question answering and its Application to business
intelligence”. In: IEEE 7th International Conference on Research
Challenges in Information Science (RCIS). 1–12.

Lai, G., Q. Xie, H. Liu, Y. Yang, and E. Hovy. (2017). “RACE: Large-
scale ReAding Comprehension Dataset From Examinations”. In:
EMNLP. 785–794.

Lan, Z., M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut.
(2019). “ALBERT: A Lite BERT for Self-supervised Learning of
Language Representations”. CoRR. abs/1909.11942.

Lebret, R., D. Grangier, and M. Auli. (2016). “Neural Text Generation
from Structured Data with Application to the Biography Domain”.
In: EMNLP. 1203–1213.

Lee, J.-O. and D.-K. Baik. (1999). “SemQL: A Semantic Query Language
for Multidatabase Systems”. In: CIKM. 259–266.

Lee, J., W. Yoon, S. Kim, D. Kim, S. Kim, C. H. So, and J. Kang. (2019).
“BioBERT: a pre-trained biomedical language representation model
for biomedical text mining”. Bioinformatics. 36(4): 1234–1240.

Lei, C., V. Efthymiou, R. Geis, and F. Özcan. (2020). “Expanding
Query Answers on Medical Knowledge Bases”. In: EDBT. 567–578.

Lei, C., F. Özcan, A. Quamar, A. R. Mittal, J. Sen, D. Saha, and
K. Sankaranarayanan. (2018). “Ontology-Based Natural Language
Query Interfaces for Data Exploration”. IEEE Data Eng. Bull. 41(3):
52–63.

Li, F. and H. V. Jagadish. (2014a). “Constructing an Interactive Natural
Language Interface for Relational Databases”. PVLDB. 8(1): 73–84.

Li, F. and H. V. Jagadish. (2016). “Understanding Natural Language
Queries over Relational Databases”. SIGMOD Record. 45(1): 6–13.

Li, F. and H. V. Jagadish. (2014b). “NaLIR: an interactive natural
language interface for querying relational databases”. In: SIGMOD.
709–712.



References 407

Li, J., Y. Li, X. Wang, and W.-C. Tan. (2020). “Deep or Simple Models
for Semantic Tagging? It Depends on Your Data”. PVLDB. 13(12):
2549–2562.

Li, Y. and D. Rafiei. (2017). “Natural Language Data Management and
Interfaces: Recent Development and Open Challenges”. In: SIGMOD.
1765–1770.

Li, Y., H. Yang, and H. V. Jagadish. (2005). “NaLIX: An Interactive
Natural Language Interface for Querying XML”. In: SIGMOD. 900–
902.

Liu, Y., M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov. (2019). “RoBERTa: A Robustly
Optimized BERT Pretraining Approach”. CoRR. abs/1907.11692.

Lyons, G., V. Tran, C. Binnig, U. Cetintemel, and T. Kraska. (2016).
“Making the Case for Query-by-Voice with EchoQuery”. In: SIG-
MOD. 2129–2132.

Lyu, Q., K. Chakrabarti, S. Hathi, S. Kundu, J. Zhang, and Z. Chen.
(2020). “Hybrid Ranking Network for Text-to-SQL”. CoRR. abs/
2008.04759.

Mairesse, F. and S. Young. (2014). “Stochastic Language Generation
in Dialogue using Factored Language Models”. Computational Lin-
guistics. 40(4): 763–799.

Mallios, S. and N. G. Bourbakis. (2016). “A survey on human machine
dialogue systems”. In: 7th International Conference on Information,
Intelligence, Systems & Applications (IISA). 1–7.

Marneffe, M. de, B. MacCartney, and C. D. Manning. (2006). “Gener-
ating Typed Dependency Parses from Phrase Structure Parses”. In:
LREC. 449–454.

McTear, M. F. (2002). “Spoken Dialogue Technology: Enabling the
Conversational User Interface”. ACM Comput. Surv. 34(1): 90–169.

Microsoft. (2018). “Microsoft Cortana”. url: https://www.microsoft.
com/en-us/windows/cortana.

“MicroStrategy”. (2021). url: https://community.microstrategy.com/s/
article/Natural-Language-Query-in-A-Nutshell-MicroStrategy-11-
0?language=en_US.

Mikolov, T., K. Chen, G. Corrado, and J. Dean. (2013). “Efficient
Estimation of Word Representations in Vector Space”. In: ICLR.

https://www.microsoft.com/en-us/windows/cortana
https://www.microsoft.com/en-us/windows/cortana
https://community.microstrategy.com/s/article/Natural-Language-Query-in-A-Nutshell-MicroStrategy-11-0?language=en_US
https://community.microstrategy.com/s/article/Natural-Language-Query-in-A-Nutshell-MicroStrategy-11-0?language=en_US
https://community.microstrategy.com/s/article/Natural-Language-Query-in-A-Nutshell-MicroStrategy-11-0?language=en_US


408 References

Miner, A. S., A. Milstein, S. Schueller, et al. (2016). “Smartphone-
Based Conversational Agents and Responses to Questions About
Mental Health, Interpersonal Violence, and Physical Health”. JAMA
Internal Medicine. 176(5): 619–625.

Mrksic, N., D. Ó. Séaghdha, T. Wen, B. Thomson, and S. J. Young.
(2016). “Neural Belief Tracker: Data-Driven Dialogue State Track-
ing”. CoRR. abs/1606.03777.

Negi, S. and P. Buitelaar. (2015). “Towards the Extraction of Customer-
to-Customer Suggestions from Reviews”. In: EMNLP. 2159–2167.

Net, C. (2021). “Concept Net a freely-available semantic network.” url:
https://conceptnet.io/.

Orogat, A., I. Liu, and A. El-Roby. (2021). “CBench: Towards Bet-
ter Evaluation of Question Answering Over Knowledge Graphs”.
PVLDB. 14(8): 1325–1337.

Özcan, F., C. Lei, A. Quamar, and V. Efthymiou. (2021). “Semantic
Enrichment of Data for AI Applications”. In: Proceedings of the Fifth
Workshop on Data Management for End-To-End Machine Learning.

Özcan, F., A. Quamar, J. Sen, C. Lei, and V. Efthymiou. (2020). “State
of the Art and Open Challenges in Natural Language Interfaces to
Data”. In: SIGMOD. 2629–2636.

Pasupat, P. and P. Liang. (2015). “Compositional Semantic Parsing on
Semi-Structured Tables”. In: ACL. 1470–1480.

Pennington, J., R. Socher, and C. Manning. (2014). “GloVe: Global
Vectors for Word Representation”. In: EMNLP. 1532–1543.

Peters, M. E., M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee,
and L. Zettlemoyer. (2018). “Deep Contextualized Word Represen-
tations”. In: NAACL. 2227–2237.

“Power BI Platform”. (2021). url: https://powerbi.microsoft.com/en-
us/.

Preece, A. D. (2018). “Asking ’Why’ in AI: Explainability of intelligent
systems - perspectives and challenges”. Intell. Syst. Account. Finance
Manag. 25(2): 63–72.

https://conceptnet.io/
https://powerbi.microsoft.com/en-us/
https://powerbi.microsoft.com/en-us/


References 409

Punjani, D., M. Iliakis, T. Stefou, K. Singh, A. Both, M. Koubarakis,
I. Angelidis, K. Bereta, T. Beris, D. Bilidas, T. Ioannidis, N. Karalis,
C. Lange, D. Pantazi, C. Papaloukas, and G. Stamoulis. (2020).
“Template-Based Question Answering over Linked Geospatial Data”.
CoRR. abs/2007.07060.

Qiu, X., T. Sun, Y. Xu, Y. Shao, N. Dai, and X. Huang. (2020). “Pre-
trained models for natural language processing: A survey”. Science
in China E: Technological Sciences. 63(10): 1872–1897.

Quamar, A., C. Lei, D. Miller, F. Ozcan, J. Kreulen, R. J. Moore, and
V. Efthymiou. (2020a). “An Ontology-Based Conversation System
for Knowledge Bases”. In: SIGMOD. 361–376.

Quamar, A., F. Özcan, D. Miller, R. J. Moore, R. Niehus, and J. Kreulen.
(2020b). “Conversational BI: An Ontology-Driven Conversation Sys-
tem for Business Intelligence Applications”. PVLDB. 13(12): 3369–
3381.

Radford, A. and K. Narasimhan. (2018). “Improving Language Under-
standing by Generative Pre-Training”.

Radford, A., J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever.
(2019). “Language Models are Unsupervised Multitask Learners”.
OpenAI blog. 1(8): 9.

Radziwill, N. M. and M. C. Benton. (2017). “Evaluating Quality of Chat-
bots and Intelligent Conversational Agents”. CoRR. abs/1704.04579.

Rastogi, A., D. Hakkani-Tür, and L. P. Heck. (2017). “Scalable Multi-
Domain Dialogue State Tracking”. CoRR. abs/1712.10224.

Reddy, S., D. Chen, and C. D. Manning. (2019). “CoQA: A Con-
versational Question Answering Challenge”. Transactions of the
Association for Computational Linguistics. 7: 249–266.

Reiter, E. and R. Dale. (1997). “Building Applied Natural Language
Generation Systems”. Nat. Lang. Eng. 3(1): 57–87.

Reiter, E. and R. Dale. (2000). Building Natural Language Generation
Systems. USA: Cambridge University Press. isbn: 0521620368.

Richardson, J., K. Schlegel, R. Sallam, A. Kronz, and J. Sun. (2021).
“Top Trends in Data and Analytics for 2021: The Rise of the Aug-
mented Consumer”. url: https://www.gartner.com/doc/reprints?
id=1-25H0EUUY&ct=210317&st=sb.

https://www.gartner.com/doc/reprints?id=1-25H0EUUY&ct=210317&st=sb
https://www.gartner.com/doc/reprints?id=1-25H0EUUY&ct=210317&st=sb


410 References

Rieser, V. and O. Lemon. (2016). “Natural Language Generation as
Planning under Uncertainty Using Reinforcement Learning”. CoRR.
abs/1606.04686.

Rubin, O. and J. Berant. (2020). “SmBoP: Semi-autoregressive Bottom-
up Semantic Parsing”. CoRR. abs/2010.12412.

Saha, D., A. Floratou, K. Sankaranarayanan, U. F. Minhas, A. R. Mittal,
and F. Özcan. (2016). “ATHENA: An Ontology-Driven System for
Natural Language Querying over Relational Data Stores”. PVLDB.
9(12): 1209–1220.

Sanh, V., L. Debut, J. Chaumond, and T. Wolf. (2019). “DistilBERT,
a distilled version of BERT: smaller, faster, cheaper and lighter”.
CoRR. abs/1910.01108.

Santhanam, S. and S. Shaikh. (2019). “A Survey of Natural Language
Generation Techniques with a Focus on Dialogue Systems - Past,
Present and Future Directions”. CoRR. abs/1906.00500.

Santos, C. N. dos and V. Guimarães. (2015). “Boosting Named Entity
Recognition with Neural Character Embeddings”. CoRR. abs/1505.
05008.

See, A., P. J. Liu, and C. D. Manning. (2017). “Get To The Point:
Summarization with Pointer-Generator Networks”. In: ACL. 1073–
1083.

Sekine, S. and C. Nobata. (2004). “Definition, Dictionaries and Tagger
for Extended Named Entity Hierarchy”. In: LREC.

Semarchy. (2021). “The SemQL Language”. url: https://www.semarchy.
com/doc/semarchy-xdm/xdm/5.3/SemQL/overview.html.

Sen, J., C. Lei, A. Quamar, F. Özcan, V. Efthymiou, A. Dalmia, G.
Stager, A. R. Mittal, D. Saha, and K. Sankaranarayanan. (2020).
“ATHENA++: Natural Language Querying for Complex Nested
SQL Queries”. Proc. VLDB Endow. 13(11): 2747–2759.

Sen, J., F. Özcan, A. Quamar, G. Stager, A. R. Mittal, M. Jammi, C.
Lei, D. Saha, and K. Sankaranarayanan. (2019). “Natural Language
Querying of Complex Business Intelligence Queries”. In: SIGMOD.
1997–2000.

Shao, Y., C. Hardmeier, and J. Nivre. (2016). “Multilingual Named
Entity Recognition using Hybrid Neural Networks”. In: The Sixth
Swedish Language Technology Conference (SLTC).

https://www.semarchy.com/doc/semarchy-xdm/xdm/5.3/SemQL/overview.html
https://www.semarchy.com/doc/semarchy-xdm/xdm/5.3/SemQL/overview.html


References 411

Sherstinsky, A. (2020). “Fundamentals of Recurrent Neural Network
(RNN) and Long Short-Term Memory (LSTM) network”. Physica
D: Nonlinear Phenomena. 404(Mar.): 132306.

Shi, T., K. Tatwawadi, K. Chakrabarti, Y. Mao, O. Polozov, and W.
Chen. (2018). “IncSQL: Training Incremental Text-to-SQL Parsers
with Non-Deterministic Oracles”. CoRR. abs/1809.05054.

Simitsis, A., G. Koutrika, and Y. E. Ioannidis. (2008). “Précis: from un-
structured keywords as queries to structured databases as answers”.
VLDB J. 17(1): 117–149.

Song, D., F. Schilder, C. Smiley, C. Brew, T. Zielund, H. Bretz, R.
Martin, C. Dale, J. Duprey, T. Miller, and J. Harrison. (2015). “TR
Discover: A Natural Language Interface for Querying and Analyzing
Interlinked Datasets”. In: ISWC. 21–37.

Stoyanovich, J., S. Abiteboul, and G. Miklau. (2016). “Data Responsibly:
Fairness, Neutrality and Transparency in Data Analysis”. In: EDBT.
718–719.

Stoyanovich, J., B. Howe, and H. V. Jagadish. (2020). “Responsible
Data Management”. PVLDB. 13(12): 3474–3488.

Tata, S. and G. M. Lohman. (2008). “SQAK: Doing More with Key-
words”. In: SIGMOD. 889–902.

Taylor, W. L. (1953). “Cloze Procedure: A New Tool for Measuring
Readability”. In: Journalism Quarterly.

Thomson, B. and S. Young. (2010). “Bayesian update of dialogue state:
A POMDP framework for spoken dialogue systems”. Computer
Speech and Language. 24(4): 562–588.

Unger, C., L. Bühmann, J. Lehmann, A. N. Ngomo, D. Gerber, and
P. Cimiano. (2012). “Template-based question answering over RDF
data”. In: WWW. 639–648.

Usta, A., A. Karakayali, and Ö. Ulusoy. (2021). “DBTagger: Multi-Task
Learning for Keyword Mapping in NLIDBs Using Bi-Directional
Recurrent Neural Networks”. PVLDB. 14(5): 813–821.

Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin. (2017). “Attention Is All You Need”.
CoRR. abs/1706.03762.

Vinyals, O., M. Fortunato, and N. Jaitly. (2015). “Pointer Networks”.
In: Advances in Neural Information Processing Systems. Vol. 28.



412 References

Walter, S., C. Unger, P. Cimiano, and D. Bär. (2012). “Evaluation of a
Layered Approach to Question Answering over Linked Data”. In:
ISWC. 362–374.

Waltinger, U., D. Tecuci, M. Olteanu, V. Mocanu, and S. Sullivan.
(2013). “USI Answers: Natural Language Question Answering Over
(Semi-) Structured Industry Data”. In: IAAI. 1471–1478.

Wang, B., R. Shin, X. Liu, O. Polozov, and M. Richardson. (2019).
“RAT-SQL: Relation-Aware Schema Encoding and Linking for Text-
to-SQL Parsers”. CoRR. abs/1911.04942.

Wang, C., P. Huang, A. Polozov, M. Brockschmidt, and R. Singh.
(2018a). “Execution-Guided Neural Program Decoding”. CoRR.
abs/1807.03100.

Wang, W., Y. Tian, H. Xiong, H. Wang, and W. Ku. (2018b). “A
Transfer-Learnable Natural Language Interface for Databases”.
CoRR. abs/1809.02649.

Weir, N. and P. Utama. (2019). “Bootstrapping an End-to-End Natural
Language Interface for Databases”. In: SIGMOD. 1862–1864.

Wen, T.-H., M. Gašić, N. Mrkšić, P.-H. Su, D. Vandyke, and S. Young.
(2015). “Semantically Conditioned LSTM-based Natural Language
Generation for Spoken Dialogue Systems”. In: EMNLP. 1711–1721.

Williams, J. D. and S. Young. (2007). “Partially observable Markov
decision processes for spoken dialog systems”. Computer Speech and
Language. 21(2): 393–422.

Wiseman, S., A. Backurs, and K. Stratos. (2021). “Data-to-text Gen-
eration by Splicing Together Nearest Neighbors”. In: Proceedings
of the 2021 Conference on Empirical Methods in Natural Language
Processing. 4283–4299.

Wu, C., S. C. H. Hoi, R. Socher, and C. Xiong. (2020). “ToD-BERT:
Pre-trained Natural Language Understanding for Task-Oriented
Dialogues”. CoRR. abs/2004.06871.

Wu, Z. and M. S. Palmer. (1994). “Verb Semantics and Lexical Selection”.
In: ACL. 133–138.

Xu, X., C. Liu, and D. Song. (2017). “SQLNet: Generating Structured
Queries From Natural Language Without Reinforcement Learning”.
CoRR. abs/1711.04436.



References 413

Yang, Z., Z. Dai, Y. Yang, J. G. Carbonell, R. Salakhutdinov, and
Q. V. Le. (2019). “XLNet: Generalized Autoregressive Pretraining
for Language Understanding”. CoRR. abs/1906.08237.

Young, S. J., M. Gasic, B. Thomson, and J. D. Williams. (2013).
“POMDP-Based Statistical Spoken Dialog Systems: A Review”.
Proceedings of the IEEE. 101(5): 1160–1179.

Young, T., D. Hazarika, S. Poria, and E. Cambria. (2018). “Recent
trends in deep learning based natural language processing”. IEEE
Computational Intelligence Magazine. 13(3): 55–75.

Yu, T., Z. Li, Z. Zhang, R. Zhang, and D. R. Radev. (2018a). “TypeSQL:
Knowledge-Based Type-Aware Neural Text-to-SQL Generation”. In:
NAACL-HLT. 588–594.

Yu, T., R. Zhang, H. Er, S. Li, E. Xue, B. Pang, X. V. Lin, Y. C. Tan,
T. Shi, Z. Li, Y. Jiang, M. Yasunaga, S. Shim, T. Chen, A. R. Fabbri,
Z. Li, L. Chen, Y. Zhang, S. Dixit, V. Zhang, C. Xiong, R. Socher,
W. S. Lasecki, and D. R. Radev. (2019a). “CoSQL: A Conversational
Text-to-SQL Challenge Towards Cross-Domain Natural Language
Interfaces to Databases”. CoRR. abs/1909.05378.

Yu, T., R. Zhang, A. Polozov, C. Meek, and A. H. Awadallah. (2021).
“SCoRe: Pre-Training for Context Representation in Conversational
Semantic Parsing”. In: ICLR.

Yu, T., R. Zhang, K. Yang, M. Yasunaga, D. Wang, Z. Li, J. Ma, I. Li,
Q. Yao, S. Roman, Z. Zhang, and D. R. Radev. (2018b). “Spider: A
Large-Scale Human-Labeled Dataset for Complex and Cross-Domain
Semantic Parsing and Text-to-SQL Task”. In: EMNLP. 3911–3921.

Yu, T., R. Zhang, M. Yasunaga, Y. C. Tan, X. V. Lin, S. Li, H. Er,
I. Li, B. Pang, T. Chen, E. Ji, S. Dixit, D. Proctor, S. Shim,
J. Kraft, V. Zhang, C. Xiong, R. Socher, and D. R. Radev.
(2019b). “SParC: Cross-Domain Semantic Parsing in Context”.
CoRR. abs/1906.02285.

Zenz, G., X. Zhou, E. Minack, W. Siberski, and W. Nejdl. (2009). “From
keywords to semantic queries - Incremental query construction on
the semantic web”. J. Web Semant. 7(3): 166–176.



414 References

Zhang, R., T. Yu, H. Er, S. Shim, E. Xue, X. V. Lin, T. Shi, C.
Xiong, R. Socher, and D. Radev. (2019). “Editing-Based SQL Query
Generation for Cross-Domain Context-Dependent Questions”. In:
EMNLP-IJCNLP. 5337–5348.

Zhang, Y., S. Sun, M. Galley, Y.-C. Chen, C. Brockett, X. Gao, J.
Gao, J. Liu, and B. Dolan. (2020a). “DIALOGPT : Large-Scale
Generative Pre-training for Conversational Response Generation”.
In: ACL. 270–278.

Zhang, Z., Y. Wu, H. Zhao, Z. Li, S. Zhang, X. Zhou, and X. Zhou.
(2020b). “Semantics-Aware BERT for Language Understanding”. In:
AAAI. 9628–9635.

Zhong, V., C. Xiong, and R. Socher. (2017). “Seq2SQL: Generating
Structured Queries from Natural Language using Reinforcement
Learning”. CoRR. abs/1709.00103.


	Introduction
	Background
	Data Modeling: Ontologies, Taxonomies, Knowledge Graphs
	Language Models
	Semantic Tagging and Named Entity Recognition
	Natural Language Generation
	Conversational Systems

	Natural Language Querying Architectures
	Rule-Based Approaches
	Text-to-SQL Approaches
	Hybrid Approaches

	Conversational Data Analysis and Exploration
	Conversational Semantic Parsing
	Dialogue Management
	Conversational Business Intelligence

	Benchmarks and Evaluation Techniques
	WikiTableQuestions
	WikiSQL
	Spider
	SParC
	CoSQL
	LC-QuAD
	FIBEN
	CBench
	THOR

	Open Challenges
	Conclusion
	References

