Property Graph Schema Optimization for Domain-Specific Knowledge Graphs

Rana Alotaibi
UC San Diego

Chuan Lei
IBM Research – Almaden

Abdul Quamar
IBM Research – Almaden

Vasilis Efthymiou
FORTH – ICS

Fatma Özcan
Google
Motivation

Graph query performance varies vastly for different property graphs corresponding to different schemas

Ontology provides unique opportunities for schema optimization
System overview

Property Graph Schema Optimizer

Relationship Rules

Schema Optimization

Optimized Property Graph Schema

Graph Data

Graph Queries

Ontology

Space Limit

Data Statistics

Workload Summaries

Graph Backend
Union rule

- Union relationship
 - Union concept and member concept
 - Each instance of a union concept is an instance of one of its member concepts, and vice versa
- Directly connect the member concept to the other concepts that connect to the union concept
 - Avoid edge traversals between union and member concepts

Drug (name STRING, brand STRING), ContraIndication (desc STRING), BlackBoxWarning (note STRING, route STRING), (Drug)-[cause]->(ContraIndication), (Drug)-[cause]->(BlackBoxWarning)
Inheritance rule

• Inheritance relationship
 § Parent and child concepts
 § Similar to union relationship, except a parent concept may have instances that are not present in any of its children

• Three scenarios
 § Scenario 1 – connect the child to the concepts associated with its parent, and attach all data properties of the parent to the child
 § Scenario 2 – connect the parent to the concepts associated with its child, and attach all data properties of the child to the parent
 § Scenario 3 – connect the parent and child with an edge of type isA

• Use Jaccard similarity (parent & child) to choose from three scenarios
 § Avoid edge traversals between parent and child concepts
One-to-one relationship rule

• One-to-one relationship
 ▪ An instance of one concept can only relate to one instance of the other
 concept, and vice versa

• Represent two concepts as one combined node in the
 optimized schema
 ▪ Similar to joining two tables in relational databases (one row in one
 table is linked with only one row in another table and vice versa)
 ▪ Avoid edge traversals and reduce number of instances (vertices)

Drug (name STRING, brand STRING),
IndicationCondition (desc STRING, name STRING),
(Drug)-[treat]->(IndicationCondition)
One-to-many & many-to-many relationship rules

- **One-to-many relationship**
 - An instance of one concept \((c_i) \) can potentially refer to several instances of the other concept \((c_j) \), but not vice versa.

- **Many-to-many relationship**
 - Equivalent to two one-to-many relationships.
 - An instance of one concept \((c_i) \) can potentially refer to several instances of the other concept \((c_j) \), and vice versa.

- **Propagate each data property of** \(c_i \) **as a property of type** LIST **to** \(c_j \)
 - Similar to the denormalization technique in relational databases where data replication is added to one or more tables to avoid costly joins.
 - Avoid edge traversals to improve aggregation and 1-hop neighbor lookup in graph queries.

```sql
Drug (name STRING, brand STRING, Indication.desc LIST),
Indication (desc STRING),
(Drug)-[treat]->(Indication)
```
Schema optimization algorithms

• Without space constraints
 ▪ Iteratively apply the proposed relationship rules in order and generate an optimal property graph schema (harness all possible optimization opportunities)
 ▪ **Theorem** – applying the rules in any order results in the same property graph schema [proof in the paper]

• With space constraints
 ▪ Concept-centric algorithm
 ▪ Relation-centric algorithm
Concept-centric (CC) schema optimization algorithm

• Core idea – prioritize relationships of key concepts in an ontology
 ▪ Key concepts – similar to PageRank, rank concepts based on ontology structural information
 / Inheritance and union
 / Concept out-degree
 ▪ Leverage additional information
 / Access frequency
 / Data characteristics

\[
Score(c_i) = \frac{c_i \cdot pr \cdot AF(c_i)}{Size(c_i)}
\]
Relation-centric (RC) schema optimization algorithm

- **CC algorithm limited to each concept locally (not global optimal)**
- **Core idea**
 - Reduce the relationship selection problem to 0/1 Knapsack problem
 - Leverage the fully polynomial time approximation scheme (FPTAS) to produce a global optimal solution
 - Prioritize relationships based on a cost-benefit model
 - **Union relationship** – \(\text{Benefit}(r) = AF(c_i \rightarrow c_j) \) \(\mid \text{Cost}(r) = \sum_{r' \in (R \setminus \text{union})} |r'| \)
 - **Inheritance relationship** – \(\text{Benefit}(r) = AF(c_i \rightarrow c_j \cdot p_j) \cdot JS(c_i, c_j) \)
 \[\text{Cost}(r) = \begin{cases} \sum_{p \in c_j \cdot P_j} |c_j| \cdot p \cdot \text{type} + \sum_{r \in (c_j \cdot R_{\text{inheritance}})} |r'|, & \text{if } \theta_1 < JS(c_i, c_j) \\ \sum_{p \in c_i \cdot P_i} |c_i| \cdot p \cdot \text{type} + \sum_{r \in (c_i \cdot R_{\text{inheritance}})} |r'|, & \text{if } JS(c_i, c_j) < \theta_2 \end{cases} \]
 - **One-to-many and many-to-many relationships** – \(\text{Benefit}(r) = AF(c_i \rightarrow c_j \cdot P) \) \(\mid \text{Cost}(r) = |r| \cdot p \cdot \text{type} \)
Experimental setup

• Two real-world datasets
 ▪ Medical data (MED) – 12 GB, 43 concepts, 78 properties, and 58 relationships (11 inheritance, 5 one-to-one, 30 one-to-many, and 12 many-to-many relationships)
 ▪ Financial data (FIN) – 53 GB, 90 concepts, 96 properties, and 103 relationships (4 union, 69 inheritance, and 30 one-to-many relationships)
• Two workload summaries (Uniform and Zipf)
• Two graph engines (JanusGraph and Neo4j)
• Measures
 ▪ Property graph schema quality
 ▪ Graph query performance
Experimental results – schema quality

- Vary space constraint
 - RC consistently outperforms CC with both uniform and Zipf workloads
 - Both algorithms effectively utilize the given space constraint
Experimental results – schema quality

- Vary Jaccard similarity
 - Use FIN as it consists of multiple inheritance relationships
 - Both CC and RC are robust with different similarity thresholds
 - RC outperforms CC since it chooses relationships with a global ordering
Experimental results – query performance

Microbenchmark

- **Microbenchmark**
 - Pattern matching (Q_1-Q_4), property lookup (Q_5-Q_8), aggregation (Q_9-Q_{12})
 - The optimized schema has significant advantages over direct mapping schema for all queries
- **Graph query workload**
 - The optimized schema offer significant performance boosts to the graph query workloads on both JanusGraph and Neo4j
Conclusions

• Our ontology-driven approach is the first to address the property graph schema optimization

• We propose
 ▪ A set of rules that reduce the edge traversals by exploiting the rich semantic relationships in the ontology, leading to better graph query performance
 ▪ Concept-centric and relation-centric algorithms, utilizing the proposed rules to generate an optimized property graph schema

• Graph queries over the optimized property graphs (MED and FIN) achieve up to 2 orders of magnitude performance gains compared to the baseline
Thank you!

Questions?