Property Graph Schema Optimization for Domain-Specific Knowledge Graphs

Rana Alotaibi1, Chuan Lei2, Abdul Quamar2, Vasilis Efthymiou3, Fatma Özcan2
1University of California - San Diego, La Jolla, CA, USA
2IBM Research - Almaden, San Jose, CA, USA
3University of California - San Diego, La Jolla, CA, USA
1ralotaib@eng.ucsd.edu, 2chuan.lei@ibm.com, 3ahquamar@us.ibm.com

Abstract—Enterprises are creating domain-specific knowledge graphs by curating and integrating their business data from multiple sources. Ontologies provide a semantic abstraction for such knowledge graphs to describe their data in terms of the entities involved and their relationships. There has been a lot of effort to build systems that enable efficient querying over knowledge graphs, represented as property graphs. However the problem of schema optimization in the property graph setting has been largely ignored. In this work, we show that graph schema design has significant impact on query performance, and propose two algorithms to generate an optimized property graph schema from the domain ontology. To the best of our knowledge, we are the first to present an ontology-driven approach for property graph schema optimization. The rich semantic relationships in an ontology contain a variety of opportunities to reduce edge traversals and consequently improve the graph query performance. Our experimental study with two real-world knowledge graphs shows that our algorithms produce high-quality schemas, achieving up to 2 orders of magnitude speed-up compared to alternative schema designs.

I. INTRODUCTION

Domain-specific knowledge graphs are playing an increasingly important role to derive business insights in many enterprise applications such as customer engagement, fraud detection, network management, etc. One distinct characteristic of these enterprise knowledge graphs, compared to the open-domain knowledge graphs like DBpedia [1] and Freebase [2], is their deep domain specialization. The domain specialization is typically captured by an ontology which provides a semantic abstraction to describe the entities and their relationships of the data in the knowledge graphs. A few widely used domain-specific ontologies include Unified Medical Language System (UMLS)1 and SNOMED Clinical Terms2 in the medical domain, Financial Industry Business Ontology (FIBO)3 and Financial Report Ontology (FRO)4 in the financial domain, and many more in various other domains5. These ontologies are often used to drive the creation of a knowledge graph by ingesting and transforming raw data from multiple sources into standard terminologies. The curated knowledge graphs allow users to express their queries in standard vocabularies, which promotes more interoperable and effective enterprise applications for specific domains [3].

There are two popular approaches to store and query knowledge graphs: RDF data model and SPARQL query language [4] or property graph model and graph query languages such as Gremlin [5] and Cypher [6]. An important difference between RDF and property graphs is that RDF regularizes the graph representation as a set of triples, which means that even literals are represented as graph vertices. Such artificial vertices make it hard to express graph queries in a natural way. The property graph model instead uses vertices to represent entities and edges to represent the relationships between them, with each specified using key-value properties pairs [7]. For this reason, property graph systems such as Neo4j6, JanusGraph7, Amazon Neptune8, and Db2 Graph [8] are rapidly gaining popularity for graph storage and retrieval. Many graph applications (e.g., community detection, centrality analysis, and link prediction) heavily rely on the performance of graph queries over the property graph systems. Although many techniques have been proposed for optimizing query performance, system scalability, and transaction support for these systems [9]–[12], the problem of property graph schema [13] optimization has been largely ignored, which is also critical to graph query performance.

In this paper, we tackle the property graph schema optimization problem for domain-specific knowledge graphs. Our goal is to create an optimized schema9 using a given ontology, such that the corresponding property graph can efficiently support various types of graph queries (e.g., pattern matching, path finding, or aggregation queries) with better query performance. The raw data is loaded directly as a property graph that conforms to the optimized schema. One straightforward way to create a property graph schema from an ontology is to directly map each ontology concept to a schema node, and to map each ontology relationship to a schema edge, analogous to ER diagram to relational schema mapping. However, we argue that the graph query performance varies vastly for different property graphs with the same data but corresponding to different schemas, and the rich semantic information in the ontology

2http://www.snomed.org/
3https://spec.edmcouncil.org/fibo/
5https://lod-cloud.net/
6Neo4j Graph Database - https://neo4j.com/
7JanusGraph - https://janusgraph.org/
8Amazon Neptune - https://aws.amazon.com/neptune/
9We use the terms property graph schema, graph schema, and schema interchangeably.
provides unique opportunities for schema optimization. We illustrate this using two examples from the medical domain.

Example 1 (Pattern matching query). Consider the ontology in Fig. 1(a), *summary* is a property of *DrugInteraction* concept, which is connected to *DrugFoodInteraction* and *DrugLabInteraction* concepts via inheritance (isA) relationships. Fig. 1(b) and Fig. 1(c) show two alternative property graphs conforming to two different schemas. In Fig. 1(b), the vertex *dli1* (i.e., an instance of *DrugInteraction*) leads to both *dfi1* and *dli1*. In Fig. 1(c), *drug1* directly connects to *dfi1* and *dli1*. For any query that requires edge traversals from *drug1* to either *dfi1* or *dli1* or both, the property graph 2 requires less number of edge traversals. A pattern matching query interested in *Drug* and the associated *risk* of *DrugFoodInteraction* achieves 2 orders of magnitude performance gains on the optimized property graph (23ms) compared to the property graph 1 (3245ms).

![Fig. 1: Motivating Example.](image)

Contributions. The contributions of this paper can be summarized as follows:

1. We propose an ontology-driven property graph schema optimization approach for domain-specific knowledge graphs.
2. We design a set of rules that reduce the edge traversals by exploiting the rich semantic relationships in the ontology, resulting in better graph query performance.
3. We propose concept-centric and relation-centric algorithms that harness the proposed rules to generate an optimized property graph schema from an ontology. The concept-centric algorithm utilizes the centrality analysis of concepts, and the relation-centric algorithm uses a cost-benefit model.
4. Our experiments show that our ontology-driven approach effectively produces optimized graph schemas for two real-world knowledge graphs from medical and financial domains. The queries over the optimized property graphs achieve up to 2 orders of magnitude performance gains compared to the graphs resulting from the baseline approach.

The rest of the paper is organized as follows. Section II introduces the basic concepts, formulates the problem, and provides an overview of our ontology-driven approach. Section III describes our optimization rules for different types of relationships in an ontology. Section IV explains the algorithms to produce optimized property graph schema. We provide our experimental results in Section V, review related work in Section VI, and finally conclude in Section VII.

10 We refer to the access frequency of concepts, relationships and properties as workload summaries which will be formally defined later.
II. PRELIMINARIES & APPROACH OVERVIEW

A. Preliminaries

An ontology describes a particular domain and provides a structured view of the data. Specifically, it provides an expressive data model for the concepts that are relevant to that domain, the properties associated with the concepts, and the relationships between concepts.

Definition 1 (Ontology (O)). An ontology O (C, R, P) contains a set of concepts C = {c_n|1 ≤ n ≤ N}, a set of data properties P = {p_m|1 ≤ m ≤ M}, and a set of relationships between the concepts R = {r_k|1 ≤ k ≤ K}.

An ontology is typically described in OWL [14], wherein a concept is defined as a class, a property associated with a concept is defined as a DataProperty and a relationship between a pair of concepts is defined as an ObjectProperty. Each DataProperty p_i ∈ P_n represents a characteristic of a concept c_n ∈ C and P_n ⊆ P represents the set of DataProperties associated with the concept c_n. Each Object-Property r_k = (e_s, e_d, t) is associated with a source concept e_s ∈ C, a destination concept e_d ∈ C, and a relationship type t. The type t can be either a functional (i.e., 1:1, 1:M, M:N), an inheritance (a.k.a isA) or a union/membership relationship [11]. In this paper, we use the ontology as a semantic data model of a knowledge graph.

We adopt the widely used property graph model from [15].

Definition 2 (Property Graph (PG)). A property graph PG (V, E) is a directed multi-graph with vertex set V and edge set E, where each node v ∈ V and each edge e ∈ E has data properties consisting of multiple attribute-value pairs.

Similar to a relational database schema that describes tables, columns, and relationships of a relational database, the property graph schema is critical and beneficial for creating high-quality domain-specific graphs. A property graph with an underlying schema enables graph query optimization, and allows definition of constraints as well as data exchange [13].

A property graph scheme PGS can be specified in a data definition language such as Neo4j’s Cypher [6], TigerGraph’s GSQL [16], or GraphQL SDL [17]. They all define notions of node types and edge types, as well as property types that are associated with a node type or with an edge type. We adopt Cypher due to its popularity, but our proposed techniques are independent of the aforementioned languages. Table I provides the notations used in this paper.

TABLE I: Notations.

<table>
<thead>
<tr>
<th>Notations</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>an ontology</td>
</tr>
<tr>
<td>c_i</td>
<td>c_i ∈ C: a concept in an ontology</td>
</tr>
<tr>
<td>r_i</td>
<td>r_i ∈ R: a relationship in an ontology</td>
</tr>
<tr>
<td>P_i</td>
<td>all data properties associated to c_i</td>
</tr>
<tr>
<td>c_i.inE</td>
<td>all incoming relationships of c_i</td>
</tr>
<tr>
<td>c_i.outE</td>
<td>all outgoing relationships of c_i</td>
</tr>
<tr>
<td>c_i.inE</td>
<td>c_i.inE ⊂ c_i.outE</td>
</tr>
<tr>
<td>c_i.src</td>
<td>the source concept of r_i</td>
</tr>
<tr>
<td>r_i.dst</td>
<td>the destination concept of r_i</td>
</tr>
<tr>
<td>PGS</td>
<td>a property graph schema</td>
</tr>
<tr>
<td>vS_i</td>
<td>a node schema defined in PGS</td>
</tr>
<tr>
<td>vS_i.P_i</td>
<td>all data properties associated to vS_i</td>
</tr>
<tr>
<td>eS_i</td>
<td>an edge schema defined in PGS</td>
</tr>
<tr>
<td>eS_i.type</td>
<td>the edge type of e_i</td>
</tr>
<tr>
<td>PG</td>
<td>a property graph</td>
</tr>
</tbody>
</table>

B. Approach Overview

Given an ontology O providing a semantic abstraction of the input data, the problem of property graph schema optimization is to generate a property graph schema that produces the best query performance for various graph queries (e.g., pattern matching, path finding, or aggregation queries). Optimizing the property graph might entail data replication and hence increased memory footprint. In real knowledge graph applications, especially in a multi-tenant setting, there is a limit on the amount of memory that we can trade for query performance. Hence, we need to incorporate a space constraint while producing an optimized property graph schema.

Fig. 3 provides an overview of our property graph schema optimization approach. The property graph schema optimizer takes as input an ontology and optionally a space limit, data statistics, as well as workload summaries [12]. It utilizes a set of rules designed for different types of relationships to produce an optimized property graph schema. The raw graph data is then loaded into a graph database (e.g., Neo4j or JanusGraph) conforming to the optimized schema. At query time, users can directly express graph queries against this instantiated property graph corresponding to the optimized schema.

11 Even if inheritance and union are not ObjectProperties, we simplify the notation for presentation purposes.
III. RELATIONSHIP RULES

Graph queries often involve multi-hop traversal or vertex attribute lookup-analytics on property graphs. As shown in the motivating examples, edge traversals over a graph are vital to the overall query performance. Hence, we focus on the rich semantic relationships in an ontology and propose a set of novel rules for different types of relationships, leading to significant performance improvements on the most common graph query patterns [18]. We briefly describe these rules below and the details can be found in [19].

Union Rule. In an ontology, a union relationship $(r_{un} = (c_i, c_j))$ contains a union concept (c_i) and a member concept (c_j). Each instance of a union concept is an instance of one of its member concepts, and vice versa. If we create a property graph directly from the ontology shown in Fig. 2, then the queries starting from any vertices of either BlackBoxWarning or ContraIndication concepts have to traverse through some vertex of Risk in order to reach the vertices of Drug. This leads to unnecessary edge traversal.

Fig. 4: Union Relationship.

\[
\begin{align*}
\text{Drug (name STRING, brand STRING),} \\
\text{ContraIndication (desc STRING),} \\
\text{BlackBoxWarning (note STRING, route STRING),} \\
\text{(Drug)-[cause]->(ContraIndication),} \\
\text{(Drug)-[cause]->(BlackBoxWarning)}
\end{align*}
\]

(a) Optimized PGS

(b) Optimized PG

Hence we propose a union rule to alleviate this issue. The union rule first creates a union node v_{si} (based on the corresponding c_i in O) and its member node v_{sj} (based on the corresponding c_j in O) in the property graph schema. Then the member node v_{sj} is connected to the other nodes that connect to the union node v_{si} in the property graph schema. Fig. 4(a) and Fig. 4(b) show the property graph schema and the corresponding property graph after applying the union rule to the above example.

Inheritance Rule. An inheritance relationship $(r_{ih} = (c_i, c_j))$ contains a parent concept (c_i) and a child concept (c_j). Similar to the union rule, we create a parent node v_{si} (corresponding to c_i) and its child node v_{sj} (corresponding to c_j) in the property graph schema. Unlike a union concept, a parent concept in the inheritance relationship may have instances that are not present in any of its children concepts. This leads to the following three cases.

1) Connect the child node directly to the nodes that are connected to its parent node, and attach all data properties v_{si}, P_i of v_{si} to the child node v_{sj} in the schema.
2) Connect the parent node directly to the nodes that are connected to its child node, and attach all data properties v_{sj}, P_j of v_{sj} to the parent node v_{si} in the schema.
3) Or connect the parent v_{si} and child v_{sj} nodes with an edge of type isA.

Fig. 5(a) and Fig. 5(b) demonstrate the first scenario where the data properties (summary) of the parent node DrugInteraction are directly attached to two children nodes DrugFoodInteraction and DrugLabInteraction. Fig. 5(c) and Fig. 5(d) depict the second case where the data properties risk and mechanism of two respective child nodes are now attached to the parent node DrugInteraction.

However, attaching data properties to a parent or child node incurs data replication. Hence we exploit the Jaccard similarity between c_i, P_i and c_j, P_j from the given ontology O to decide the best strategy for the inheritance relationship:

\[
JS(c_i, P_i, c_j, P_j) = |c_i, P_i \cap c_j, P_j| / |c_i, P_i \cup c_j, P_j|.
\]

(1)

If $JS(c_i, P_i, c_j, P_j) \geq \theta_1$, attaching the data properties from the child node to the parent node incurs less space overhead compared to the other way. If $JS(c_i, P_i, c_j, P_j) \leq \theta_2 (\theta_2 \leq \theta_1)$, it is more cost effective to make the data properties of the parent node available at the child node. The inheritance rule avoids edge traversals in the resulting property graph.

One-to-one Rule. A 1:1 relationship $(r_{1:1} = (c_i, c_j), c_i \neq c_j)$ indicates that an instance of c_i can only relate to one instance of c_j and vice versa. Two concepts $(c_i$ and $c_j)$ of a 1:1 relationship can be represented as one combined node v_{si} in the optimized schema, which is similar to joining two tables in relational databases where one row in one table is linked with only one row in another table and vice versa. If two tables are merged, then a join can be saved when two tables are queried together. The other tables can still join with the merged table through their respective relationships. Note that the two concepts that are merged to create a new combined node are not removed from the original graph. Namely, the 1:1 rule preserves the original semantics and does not lead to any information loss.

In Fig. 6(a), IndicationCondition is the node with two data properties, name and note, attached, representing Indication and Condition. Hence the edge traversal (e.g., from Drug to Condition in Fig. 2) is avoided and the number of instance vertices (i.e., space consumption) is reduced as well.

One-to-many Rule. A 1:M relationship $(r_{1:M} = (c_i, c_j))$ indicates that an instance of c_i can potentially refer to several
instances of c_j). However, an instance of c_j cannot have more than one corresponding instance of c_i. To better support the aggregation (e.g., COUNT, SUM, AVG, etc.) and neighborhood (1-hop) lookup functions in graph queries, we first create two nodes v_{s_i} and v_{s_j} corresponding to c_i and c_j in the optimized schema. Then we propagate each data property v_{s_j}.P$_j$ of v_{s_j} as a property of type LIST to the other node v_{s_i} (Fig. 7(a)). This is similar to denormalization technique in relational databases where data replication is added to one or more tables in order to avoid costly joins.

As depicted in Fig. 7(b), Indication.desc is a data property of drug2 consisting of a list of descriptions (i.e., [Fever, Headache]) that saves the aggregation queries edge traversals to the other instance vertices (e.g., ind1 and ind2). However, the newly introduced property of type LIST introduces additional space overheads. Therefore, choosing the appropriate set of data properties from each 1:M relationship is critical to both query performance and space consumption.

Many-to-many Rule. An $M:N$ relationship ($r_{M:N} = (c_i, c_j)$) is essentially equivalent to two 1:M relationships, namely, $r_{1:M} = (c_i, c_j)$ and $r_{1:M} = (c_j, c_i)$. Therefore, the many-to-many rule is identical to the one-to-many rule, except that the property propagation is done for both directions. Hence applying the many-to-many rule leads to the same potential gains for queries with aggregate or neighborhood (1-hop) lookup functions at the cost of introducing space overhead.

In summary, all proposed rules reduce the number of edge traversals which improve graph query performance. Moreover, these rules can be utilized in graph systems using different storage backends. The potential benefits could be more significant when the storage backend changes from in-memory to disk as edge traversals may incur additional disk I/Os. However, these rules may incur space overheads. In Section IV, we describe our property graph schema optimization algorithms, trading off performance gain and space overhead.

IV. PROPERTY GRAPH SCHEMA OPTIMIZATION

In this section, we first introduce a property graph schema optimization algorithm in an ideal scenario (i.e., no space constraints). Then, we describe our concept-centric and relationship-centric algorithms that harness the proposed rules and a cost-benefit model to generate an optimized property graph schema for a given space constraint.

A. Optimization Without Space Constraints

To produce an optimized property graph schema, we need to determine how to utilize the proposed rules described in Section III. A straightforward approach is to iteratively apply these rules in order and generate the property graph schema. We provide an overview of the schema optimization algorithm below and the details can be found in [19].

The proposed schema optimization algorithm takes as input an ontology O and first computes the Jaccard similarity scores for all inheritance relationships. Then, it iteratively applies the appropriate rule to each relationship in the ontology. At the end of each iteration, it checks if the ontology converges. Finally, when no more rule applies, a property graph schema is generated. In fact, these rules can be applied in any order, and the generated property graph schema is always the same.

Theorem 1. Applying the union, inheritance, 1:M and M:N rules in any order produces a unique PGS, if there is no space constraint.

Proof. The proof can be found in the technical report [19].

B. Schema Optimization With Space Constraints

While the naive approach harnesses all potential optimization opportunities aggressively, it incurs space overhead from union, inheritance, 1:M, and M:N rules. This can be expensive, especially in a multi-tenant architecture, where many large-scale property graphs co-exist. Hence our goal is to produce an optimized property graph schema for a given space limit. To measure the quality and the space consumption of an optimized property graph schema, we leverage additional information such as data and workload characteristics.

Data characteristics contain the basic statistics about each concept, data property, and relationship specified in the given ontology. The statistics include the cardinality of data instances of each concept and relationship, as well as the data type of each data property. The data characteristics reflect the cost of applying the proposed rules to each relationship.

Access frequencies provide an abstraction of the workload in terms of how each concept, relationship, and data property accessed by each query in the workload. We use $AF(c_r \rightarrow c_j, P_j)$ to indicate the frequency of queries (the number of queries) that access a data property in c_j, P_j from the concept c_r through the relationship r_k. The high frequency of a relationship indicates its relative importance among all relationships in the given ontology. Hence the access frequencies reveal the benefit of optimizing each relationship.

Definition 3 (Optimal Property Graph Schema). Let PGS be the set of all property graph schemas, such that $\forall PGS' \in \mathcal{P}$. We denote the optimal property graph schema as OPT_GS.
we have \(\text{Cost}(\mathcal{PGS}') \leq S \), where \(S \) is a given space constraint. \(\mathcal{PGS}_{\text{opt}} \in \mathcal{PGS} \) is an optimal property graph schema if \(\exists \mathcal{PGS}' \in \mathcal{PGS} \) such that \(\text{Benefit}(\mathcal{PGS}') > \text{Benefit}(\mathcal{PGS}_{\text{opt}}) \).

An optimal property graph schema dictates which subsets of relationships and their associated concepts are chosen to optimize for a given space constraint \(S \). The search space thus consists of all possible combinations of relationship subsets, which is exponential in the number of relationships in a given ontology. As shown later in Proposition 1, finding an optimal property graph schema is NP-hard. Hence, we need to design efficient heuristics to produce a near-optimal property graph schema. To achieve this goal, we design a cost-benefit model (Eqs. 2-5) to capture the above described information and propose two property graph schema optimization algorithms driven by the cost-benefit model.

1) Concept-Centric Algorithm: As described in Section II, an ontology describes a particular domain and provides a concept-centric view over domain-specific data. Intuitively, some concepts are more critical to the domain, and have more relationships with the other concepts [20]. We expect these key concepts to be queried more frequently than other concepts, which is confirmed in [21]. This leads to our concept-centric algorithm that exploits the structural information in an ontology to identify key concepts which we believe are more likely to be accessed more often. Hence, this algorithm is useful when no workload summary is available.

To determine these key concepts, we utilize centrality analysis over the ontology to rank all concepts according to their respective centrality score. The centrality analysis is based on the commonly used PageRank algorithm [22] (a variant of Eigenvector centrality) as our intuition of key concepts is similar to the importance of website pages. Compared to PageRank, our OntologyPR (Algorithm 1) further introduces weights for both in and out degrees of concepts in determining their centrality scores.

Inheritance. We first remove inheritance relationships from the ontology while running the initial PageRank algorithm. This allows us to calculate the rank of a concept based on its relationships to non-hierarchical concepts. After computing the PageRank scores of all concepts, we re-attach the inheritance relationships and update the score of each concept by finding the parent with the highest score. The intuition is that a child concept inherits all its other properties from the same chain of concepts and hence would have a similar estimate of centrality.

Unions. For each incoming relationship to a union concept, we create new relationship between the source concept and each of the member concepts of the union. For each outgoing relationship, similarly, we create new relationships between the destination and each of the member concepts of the union. Thus the page rank mass is appropriately distributed to/from the member nodes of the union. Finally, the union node itself is removed from the graph as its contribution towards centrality analysis has already been accounted for by the new relationships to/from the member concepts of the union.

Out-degree of Concepts. In the default PageRank algorithm, the weight distribution is proportional to the in-degree of a node as it receives PageRank values from all its neighbors that point to it. However, for a domain ontology, we observe that both in-degree and out-degree are equally important in terms of the key concept. Hence, we introduce a reverse edge in the ontology, essentially making the graph equivalent to an undirected graph. Then, the OntologyPR algorithm uses this modified ontology as an input to determine the centrality score of each concept.

Algorithm 1 Ontology PageRank Algorithm (OntologyPR)

Input: \(\mathcal{O} = (C, R, P) \)
Output: \(\mathcal{O} = (C, R, P) \)
1: \(C_{\text{un}} \leftarrow \) empty set
2: for each \(r \in R \) of type union do
3: \(c_i \leftarrow r.\text{src} \) \hspace{0.5cm} // the union concept of \(r \)
4: \(c_j \leftarrow r.\text{dst} \) \hspace{0.5cm} // the member concept of \(r \)
5: \(C_{\text{un}}.\text{add}(c_i) \)
6: \(c_j.R_i \leftarrow (c_i.R_j \cup c_i.R_i) \setminus r \)
7: \(O.\text{remove}(C_{\text{un}}) \)
8: for each \(r \in R \) do
9: if \(r \) is of type inheritance then
10: \(R_{\text{un}}.\text{add}(r) \)
11: \(O.\text{remove}(r) \)
12: else
13: \(O.\text{add}(r') \) \hspace{0.5cm} // add a reverse relation \(r' \)
14: pageRank(O) \hspace{0.5cm} // PageRank on the modified ontology
15: \(O.\text{add}(R_{\text{un}}) \) \hspace{0.5cm} // add inheritance relationships back
16: updatePR(O) \hspace{0.5cm} // update PageRank score for inheritance concepts
17: return \(O \) \hspace{0.5cm} // \(O \) associated with PageRank scores

Using OntologyPR, we associate PageRank scores with each concept in the ontology. To accurately capture the relative importance of the concepts, we further leverage the data characteristics and access frequency information to rank all concepts. The ranking score for a concept is defined as follows.

\[
\text{Score}(c_i) = \frac{c_i.\text{pr} \times AF(c_i)}{\text{Size}(c_i)},
\]

where \(c_i.\text{pr} \) denotes the PageRank score of \(c_i \), \(AF(c_i) \) denotes the access frequency of \(c_i \) including accessing all data properties of \(c_i \), and \(\text{Size}(c_i) \) denotes the size of \(c_i \) including all data properties of \(c_i \).

Algorithm 2 Concept-Centric Algorithm

Input: Ontology \(\mathcal{O} = (C, R, P) \), space limit \(S \)
Output: A property graph schema \(\mathcal{PS} \)
1: \(O \leftarrow \) ontologyPR(O)
2: \(C_{\text{sort}} \leftarrow \text{sort}(C) \)
3: for each \(c \in C_{\text{sort}} \) do
4: for each \(r \in c.\text{R} \) do
5: \(S' \leftarrow S \)
6: \(O, S \leftarrow \text{applyRules}(r, S') \)
7: if \(S \leq 0 \) then
8: \(\text{break} \)
9: \(\mathcal{PGS} \leftarrow \text{generatePGS}(O) \)
10: return \(\mathcal{PGS} \)

Based on Eq. 2, our concept-centric algorithm (Algorithm 2) first sorts all concepts in a descending order of their respective
scores (Lines 1-2). Then, it iterates through each concept \(c \) (Lines 3-8). For each concept, the algorithm utilizes the \texttt{applyRules} procedure to apply all rules (Section III) to the relationships connecting to \(c \). During this process, the algorithm updates the space limit as it is consumed by the rules. If the space is fully exhausted, the algorithm terminates and returns the optimized property graph schema (Lines 7-10).

Complexity Analysis. The \texttt{OntologyPR} is the dominant procedure in Algorithm 2, and its time complexity is \(O((|R|+|C|)k) \), where \(|R| \) is the number of relationships, \(|C| \) is the number of concepts, and \(k \) is the maximum number of iterations. The time complexity of sorting concepts is \(O(|C|\log|C|) \). Finally, the time complexity of applying rules to the sorted concepts is \(O(|R|) \). Thus, the overall time complexity of Algorithm 2 is \(O(|R|+|C|)k \).

2) Relation-Centric Algorithm: Intuitively, the concept-centric algorithm prioritizes the relationships of the key concepts in an ontology by leveraging information such as access frequency, data characteristics, and structural information from the ontology. However, the relationship selection is limited to each concept locally. Namely, the concept-centric algorithm does not have a global optimal ordering among all relationships in the ontology. To address this issue, we propose the relation-centric algorithm based on a cost-benefit model for each type of relationships described as follows.

Cost Benefit Models. The union rule, introduced in Section III, connects the member concept directly to all concepts that are connected to the union concept. Then, the benefit of applying this rule to a union relationship \(r \) is the access frequency of \(r \), and the cost is the number of edges that we copy from the union concept to the member concept. The cost-benefit model is defined as follows.

\[
\begin{align*}
\text{Benefit}(r) &= \text{AF}(c_i \rightarrow c_j) \\
\text{Cost}(r) &= \sum_{r' \in (c_i, R_i \setminus R_o)} |r'|,
\end{align*}
\]

where \(c_i \) denotes the union concept and \(|r'| \) denotes the number of edges between the instance vertices of \(c_i \) and the ones of a neighborhood concept\(^\dagger\) \(c_j \).

The benefit of applying the inheritance rule to an inheritance relationship is the access frequency of that relationship multiplied by the Jaccard similarity between \(c_i, P_i \) and \(c_j, P_j \). Depending on that similarity, the cost of inheritance rule can be either the number of new edges attached to the parent, or the number of new edges attached to the child. Formally:

\[
\begin{align*}
\text{Benefit}(r) &= \text{AF}(c_i \rightarrow c_j, P_j) \times JS(c_i, c_j) \\
\text{Cost}(r) &= \left\{ \begin{array}{ll}
\sum_{p \in C, P_j} |c_j| \times p.type + \sum_{r \in (c_i, R_i \setminus R_o)} |r|, & \text{if } \theta_1 < JS(c_i, c_j) \\
\sum_{p \in C, P_i} |c_i| \times p.type + \sum_{r \in (c_i, R_i \setminus R_o)} |r|, & \text{if } JS(c_i, c_j) < \theta_2,
\end{array} \right.
\end{align*}
\]

where \(JS(c_i, c_j) \) denotes the Jaccard similarity between \(c_i, P_i \) and \(c_j, P_j \), \(p.type \) indicates the data type size of \(p \) (e.g., the size of \(\text{INT}, \text{DOUBLE}, \text{STRING} \), etc.), \(\sum_{p \in C, P_j} |c_j| \times p.type \) \((\sum_{p \in C, P_i} |c_i| \times p.type) \) denotes the space overheads incurred by propagating \(c_j, P_j \) to \(c_i \) (\(c_j \)), and \(\sum_{r \in (c_i, R_i \setminus R_o)} |r| \) \((\sum_{r \in (c_j, R_j \setminus R_o)} |r|) \) denotes the space overhead incurred by connecting the neighbors of \(c_i \) (\(c_j \)).

Similarly, the cost-benefit model for one-to-many rule, leveraging both data characteristics and access frequency information, is described as:

\[
\begin{align*}
\text{Benefit}(r) &= \text{AF}(c_i \rightarrow c_j, p) \\
\text{Cost}(r) &= |r| \times p.type,
\end{align*}
\]

where \(|r| \times p.type \) denotes the space overhead incurred by replicating \(p \) as a data property of type \(\text{LIST} \) to \(c_i \).

As described in Section III, each \(M:N \) relationship is equivalent to two \(1:M \) relationships. Thus, we first convert each \(M:N \) relationship into two \(1:M \) relationships, and then use Eq. 5 to decide the cost-benefit for each of them. Potentially some of the original \(M:N \) relationships could be optimized for only one direction. This increases the flexibility of applying many-to-many rule such that more frequently accessed data properties can be propagated to the other end of the relationship.

With the cost and benefit scores, our goal is to select a subset of relationships in the ontology that maximize the total benefit within the given space limit. We map our relationship selection problem to the NP-hard \(0/1 \) Knapsack Problem [23].

Proposition 1 (Reduction). If both benefit and cost of a relationship are positive, then every instance of the relationship selection problem can be reduced to a valid instance of the \(0/1 \) Knapsack problem.\(^\dagger\)

\textbf{Proof.} The proof can be found in the technical report [19].\(\Box \)

We adopt the fully polynomial time approximation scheme (FPTAS) [23] for our relation selection problem. It guarantees that the benefit of the optimized property graph schema \(\text{Benefit}(\text{PGS}) \) is within \(1-e (e \in (0,1]) \) bound to the benefit of the optimal property graph schema \(\text{Benefit}(\text{PGS}_{\text{opt}}) \).

\begin{algorithm}
\begin{align}
\text{Algorithm 3 Relation-Centric Algorithm} \nonumber \\
\text{Input: } \mathcal{O} = (C, R, P), \text{ space limit } S \nonumber \\
\text{Output: A property graph schema } \text{PGS} \nonumber \\

\text{// Compute Jaccard similarity for each inheritance relationship and get all parent concepts} \\
1: \text{for each } r \in R \text{ of type inheritance do} \\
2: \quad r.js \leftarrow \text{computeJS}(r) \\
3: \quad \text{Benefit, Cost} \leftarrow \emptyset \\
4: \text{for each } r_i \in R \text{ do} \\
5: \quad \text{Benefit}[i] \leftarrow \text{Benefit}(r_i) \\
6: \quad \text{Cost}[i] \leftarrow \text{Cost}(r_i) \\
7: \quad R_{\text{opt}} \leftarrow \text{knapsack}(R, \text{Benefit}, \text{Cost}, S) \\
8: \text{for each } r_i \in R_{\text{opt}} \text{ do} \\
9: \quad O \leftarrow \text{applyRules}(r_i) \\
10: \quad \text{PGS} \leftarrow \text{generatePGS}(O) \\
11: \text{return PGS} \\
\end{align}
\end{algorithm}

Algorithm 3 takes as inputs an ontology and the space limit. It computes the Jaccard similarity scores for all inheritance relationships (Lines 1-2). Then it computes the cost and benefit for each relationship in the ontology \(\mathcal{O} \) using Eqs. 3-5 (Lines...}
Next, the FPTAS algorithm is used to select the near-optimal subset of relationships R_{opt} with the given space limit S (Line 7). In applyRules procedure, the algorithm applies the corresponding rules; $r \in R_{opt}$ (Lines 8-9). Lastly, an optimized property graph schema is generated (Lines 10-11).

Complexity Analysis. The FPTAS knapack is the dominant procedure in Algorithm 3, and its time complexity is $O(|R|^2 \left\lceil |R|/\epsilon \right\rceil)$ [23], where $|R|$ is the number of relationships and $\epsilon \in (0, 1]$. The rest of Algorithm 3 is linear to $|R|$. Thus, the time complexity of Algorithm 3 is $O(|R|^3)$.

V. Experimental Evaluation

A. Experimental Setup

Infrastructure. We implemented our approach in Java with JDK 1.8.0 running on Ubuntu 14.04 with 16-core 3.4 GHz CPU and 128 GB of RAM. We choose two popular graph database systems, Neo4j and JanusGraph, as our graph backends. We executed each experiment ten times and here we report their average.

Data sets. To evaluate the effectiveness of our system on different application domains, we use the following two data sets and their corresponding ontologies.

1. **Medical data set (MED)** contains medical knowledge that is used to support evidence-based clinical decision and patient education. The total size of this data set is around 12 GB. The corresponding medical ontology consists of 43 concepts, 78 properties, and 58 relationships (11 inheritance, 5 one-to-one, 30 one-to-many, and 12 many-to-many relationships).

2. **Financial data set (FIN)** includes data from two main sources: Securities and Exchange Commission (SEC)\(^{14}\) and Federal Deposit Insurance Corporation (FDIC)\(^{15}\). The size of the data set is approximately 53 GB. The corresponding financial ontology contains 90 concepts, 96 properties, and 103 relationships (4 union, 69 inheritance, and 30 one-to-many relationships).

Methodology and metrics. To evaluate the quality of the property graph schemas produced by our algorithms, we vary the space limit and the Jaccard similarity thresholds for inheritance relationships with two different workload summaries (uniform and Zipf). Specifically, we show how effectively PGS_{NSC} leverages the given space limit, how robust PGS_{NSC} is to various workloads, and how sensitive PGS_{NSC} is to different similarity thresholds. PGS_{NSC} chooses the property graph schema with a higher total benefit score from relation-centric (RC) and concept-centric (CC) algorithms. We measure the quality of a property graph schema by $BR = \frac{B_{NSC}}{B_{SC}}$, where B_{NSC} is the total benefit score of the property graph schema generated by the schema optimization algorithm without any space constraint, and B_{SC} indicates the total benefit score achieved by either RC or CC algorithm.

To verify the graph query performance, we express most graph queries in both Cypher [6] and Gremlin [25], including path, reachability, and graph analytical queries. Among these query types, we construct a variety of query workloads conforming to different workload distributions over both FIN and MED. The details of these query workloads are described in Section V-C. We use latency as the metric to measure these graph queries. Latency is measured in milliseconds as the total time of all queries in a workload executed in a sequential order. We also use the number of edge traversals required in a query as the second metric. It directly reveals the computational savings achieved by our optimized property graph schema.

B. Property Graph Schema Quality

1) Varying Space Constraint: In Fig. 8 and Fig. 9, we focus on the quality of the property graph schema produced by our concept-centric (CC) and relation-centric (RC) algorithms compared to our method without space constraints (NSC). We choose two commonly seen workload summaries, uniform and Zipf distributions. Namely, the access frequencies of concepts in the ontology follow either uniform or Zipf distribution. And the skew factor of Zipf distribution is set to 1. We first use NSC to produce an optimal property graph schema PGS_{NSC} without any space constraint, and then compute the total benefit score B_{NSC} achieved by PGS_{NSC}. The space used by NSC is approximately 29GB for MED and 106GB for FIN, respectively. The total amount of space needed by the direct mapping algorithm S_{DIR} is 12GB for MED and 53GB for FIN, respectively. Then we vary the space constraint from S_{DIR} to S_{NSC}, such that the range of the Y-axis in Fig. 8 and Fig. 9 is from 0 to 1.

In Fig. 8, we observe that RC consistently outperforms CC with both uniform and Zipf workloads. The reason is that RC has a global ordering of all relationships, and the global ordering is near-optimal with respect to the given space constraint due to the adopted approximate Knapsack algorithm. On the contrary, CC suffers from a rather local optimal ordering with respect to each concept. Hence, it misses the opportunity to utilize the space for more beneficial relationships. Moreover, we observe that with approximately 20% of the maximum space constraint, RC is able to produce high-quality property graph schemas which achieve above 50% of the total benefit.

In other words, both algorithms can effectively utilize the rather limited space. Lastly, both RC and CC produce the same property graph schema as PGS_{NSC} when the space constraint reaches 100%, which substantiates Theorem 1.

Similarly, RC outperforms CC In Fig. 9, as CC utilizes the space for one concept at a time, missing the opportunities for more beneficial relationships in the ontology. We also observe that both algorithms, with uniform and Zipf workloads, have a couple of drops when the space constraint increases. The reason is primarily due to the complexity of FIN ontology. Given that the inheritance relationships are more dominant in FIN, the given space may be exhausted quickly by certain inheritance relationships. Again, RC and CC produce the same schema as PGS_{NSC} with 100% space constraint.

2) Varying Jaccard Similarity: In Fig. 10, we show the sensitivity of both CC and RC with respect to the Jaccard similarity thresholds (θ_1 and θ_2). In this experiment, we choose

\(^{15}\)https://www.fdic.gov/regulations/resources/call/index.html
and aggregation on vertices. Second, we study the overall execution time for a given graph query workload by mixing the above graph primitives. We run the graph queries, expressed in Cypher and Gremlin, on Neo4j and JanusGraph, respectively. Here our goal is not to compare the performance between two systems, rather to show that our schema optimization results in query performance improvements irrespective of the backend.

1) Microbenchmark Using Graph Primitives: With both MED and FIN data sets, we compare the query performance of the property graph created by the optimized graph schema (OPT) to the baseline property graph created by a direct mapping of the ontology (DIR). OPT is produced by the our method without space constraints (NSC) and the Jaccard similarity thresholds are \(\theta_1 = 66\% \), \(\theta_2 = 33\% \). All queries (Q1-Q12) are first expressed against DIR and then rewritten into the semantically equivalent queries over OPT. These queries are constructed according to the query patterns in [26].

We list several representative queries below.

- \(Q_1: \) MATCH (d:Drug)-[p:cause]->(r:Risk)<-[p2:unionOf]-(ci:ContraIndication)
 RETURN d.name
- \(Q_2: \) MATCH (aa:AutonomousAgent)<-[r1:isA]-(p:Person)<-[r2:isA]-(cp:ContractParty)
 RETURN aa
- \(Q_3: \) MATCH (d1:DrugLabInteraction)-[r:isA]->(dl:DrugInteraction)
 RETURN dl.summary
- \(Q_4: \) MATCH (n:Corporation)
 RETURN n.hasLegalName
- \(Q_5: \) MATCH (d:Drug)-[r:hasDrugRoute]->(dr:DrugRoute)
 RETURN dr.drugRouteId, size(COLLECT((corp:Corporation)
 RETURN size(COLLECT((corps:Corporation)
 \(Q_7: \) MATCH (con:Contract)-[r:isManagedBy]->(ci:ContractInteraction)
 \(Q_8: \) MATCH (p:Person)<-[r2:isA]-(cp:ContractParty)
 RETURN p.name

As shown in Fig. 11, the results are unequivocal. The optimized schema has significant advantages over the direct mapping schema for all types of queries. The graph pattern matching queries (Q1-Q4) report all matches of a sub-graph with 3 vertices and 2 edges in the property graph. Query execution times with our approach are at least 2.4 times faster than the direct mapping schema. The number of edge traversals on DIR is always 2 as the query is specified with 2 edges connecting 3 vertices. On the other hand, our property graph only requires at most 1 edge traversal as some of the neighbor vertices have been already merged with the starting vertices.

Q5-Q8 are vertex property lookup queries. Both Q5 and Q8 are interested in a property of a vertex of a parent concept,

\(F_IN \) ontology because it consists of multiple inheritance relationships. We also choose the same uniform and Zipf workloads used in Section V-B1. Note that the space constraint in this experiment is set to \((S_{NSC} - S_{DIR})/2\) under each specific Jaccard similarity threshold. The reason is that the cost (space overhead) of the same inheritance relationship can vary (Eq. 4) depending on the similarity threshold. Consequently, the space consumption of the optimal property graph changes under different thresholds.

As shown in Fig. 10, both CC and RC are robust under different similarity thresholds. They achieve more than 70% of the maximum benefit score with only 50% space constraint. This shows that when the cost-benefit of an inheritance relationship changes due to a different threshold, both CC and RC can adjust accordingly by choosing different and more beneficial relationships to optimize. Hence, the total benefit scores achieved by both algorithms are relatively stable.

In summary, CC and RC produce high quality property graph schemas under various settings. They work effectively with any given space constraints. Moreover, RC always produces a near-optimal property graph schema and outperforms CC in most cases. Our property graph schema generator still leverages both algorithms to choose the property graph schema with the highest benefit score under any space constraints.

C. Graph Query Execution

In this section, we focus on the graph query execution performance over the property graphs created by our ontology-driven approach. We use both MED and FIN data sets to conduct our experiments. First, we create a micro benchmark to empirically examine whether the property graph schema from our approach can actually benefit a set of graph primitives including simple pattern matching, vertex property lookup,
Fig. 11: Microbenchmark - Pattern Matching (Q1-Q4), Property Lookup (Q5-Q8), Aggregation (Q9-Q12).

and the starting vertex is a vertex of a child concept. Q6 starts from a vertex and looks for a property of its neighbor vertex. OPT has the property of type List with the starting vertex, and is able to return the result without any edge traversal. Q7 looks for a property of the starting vertex. In this case, OPT and DIR have identical query performance as no edge traversal is required. Hence OPT takes advantage of having the property of the parent concept available at the starting vertex, and consequently returns the result without any edge traversals. Therefore, the query runs more than an order of magnitude slower on the property graph of DIR than the one on OPT in the worst case.

Q9-Q12 are graph aggregation queries that involve traversal from one vertex to the other. They count the number of neighbors of the starting vertex. On average, the query execution time is an order of magnitude faster for OPT approach compared to DIR. Again, the reason is that the aggregation on the neighbor vertices can be instantaneously returned from the starting vertex. The above results suggest that using the proposed ontology-driven approach can bring significant benefits to a variety of graph queries.

Lastly, we observe that the performance gain on Neo4j is more substantial compared to JanusGraph (e.g., Q3, Q4, Q9, etc.). This shows that disk-based graph systems (e.g., Neo4j) benefit much more from our techniques, as the optimized schema requires significantly less disk I/O. Namely, the graph system loads less number of vertices and edges into memory. We expect such benefit to become even greater when the size of the property graph increases.

TABLE II: Microbenchmark - Number of Edge Traversals.

<table>
<thead>
<tr>
<th>Graph Queries</th>
<th># Edge Traversals</th>
<th>Graph Queries</th>
<th># Edge Traversals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q1</td>
<td>21,808</td>
<td>6,072</td>
<td>Q2</td>
</tr>
<tr>
<td>Q2</td>
<td>288,142</td>
<td>113,014</td>
<td>Q3</td>
</tr>
<tr>
<td>Q3</td>
<td>36,272</td>
<td>0</td>
<td>Q4</td>
</tr>
<tr>
<td>Q4</td>
<td>510,460</td>
<td>97,614</td>
<td>Q5</td>
</tr>
<tr>
<td>Q5</td>
<td>38,768</td>
<td>0</td>
<td>Q6</td>
</tr>
<tr>
<td>Q6</td>
<td>32,586</td>
<td>0</td>
<td>Q7</td>
</tr>
</tbody>
</table>

In addition, Table II reveals that OPT substantially reduces the number of edge traversals required in most queries, which leads to significant computational savings and performance gains. In several cases (e.g., Q3, Q6), edge traversals can be completely avoided as the queried information is available locally within the starting vertices. On the other hand, the performance gains of certain queries (e.g., Q5, Q8, Q12) are not as significant as others, even though the number of edge traversals with OPT is much smaller than the one with DIR. The reason is that the costs of lookup and return operations are non-trivial in both DIR and OPT, which can be observed from the latency of these queries in Fig. 11 as well.

2) Graph Query Workload Performance: To evaluate the runtime performance of the property graph schema generated by our approach, we first generate a set of query workloads, including both uniform and Zipf distributions in terms of the access frequency of the concepts in the ontology. We vary the Zipf’s skew factor from 0 (i.e., uniform distribution) to 2 (highly skewed). All query workloads consist of 15 queries of mixed types (i.e., pattern matching, lookup, and aggregation), similar to the ones used in the microbenchmark. The space limit is set to 20% of the space consumed by NSC (i.e., 15.4GB for MED and 80GB for FIN). The Jaccard similarity thresholds are $\theta_1 = 66\%$ and $\theta_2 = 33\%$. The optimized schemas (OPT$_{MED}$ and OPT$_{FIN}$) are produced by the best performing algorithm of RC and CC.

TABLE III: Benefit Ratio w.r.t B_{NSC}.

<table>
<thead>
<tr>
<th>Skew Factor</th>
<th>MED</th>
<th>FIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC</td>
<td>56%</td>
<td>59%</td>
</tr>
<tr>
<td>CC</td>
<td>80%</td>
<td>43%</td>
</tr>
</tbody>
</table>

Table III shows the quality of the property graph schema produced by RC and CC compared to the one without space constraints NSC. We observe that both RC and CC correctly prioritize the most cost-effective relationships when the workloads are highly skewed. RC performs better than CC over MED, because MED has more data properties per concepts and RC makes more flexible decisions in terms of which relationships to optimize. On the other hand, CC performs better than RC over FIN as it successfully selects few concepts that are frequently accessed by the highly skewed workloads.

We compare our optimized schemas to the direct mapping schemas (DIRECT$_{MED}$, DIRECT$_{FIN}$) on both JanusGraph and Neo4j. The total query latency measures the performance on these property graphs corresponding to different schemas.
Fig. 12 shows the total query latency in log scale. Both \(OPT_{MED} \) and \(OPT_{FIN} \) offer significant performance boosts to the graph query workloads on both JanusGraph and Neo4j. In Fig. 12(a), we observe that the total query latency on the optimized schema, on average, is around 7 and 26 times faster than the direct mapping one over \(MED \) and \(FIN \), respectively. The winning margin is substantially bigger (i.e., 129 and 176 times faster) on Neo4j (Fig. 12(b)). The total query latency on both optimized schema is approximately 2 orders of magnitude faster than the direct mapping. Moreover, we also observe that the total query latency decreases with increasing skew factor. Both \(OPT_{MED} \) and \(OPT_{FIN} \) achieve the lowest latency when the workload distributions are highly skewed. This indicates that the most frequently accessed concepts and relationships in the workloads are chosen to be optimized given the space limit. Based on these results, we verify that the designed rules for different types of relationships in the ontology are effective in terms of reducing edge traversals and consequently improving the graph query performance. Furthermore, we demonstrate that our approach can effectively utilize the given space constraint by leveraging data distribution and workload summaries.

\[\text{Latency} = \text{Skew factor} \]

![Graph](image)

(a) JanusGraph (b) Neo4j

Fig. 12: Total Query Latency (best viewed in color).

D. Efficiency of Property Graph Schema Algorithms

We also study the efficiency of our concept-centric and relation-centric algorithms. The execution times to produce an optimized property graph schema with different space constraints range from 23 to 192 ms in \(RC \), and from 34 to 373 ms in \(RC \). We also observe that neither algorithm is sensitive to the space constraint, since both algorithms have a polynomial time complexity with respect to the number of concepts and relationships in the given ontology. Due to space constraints, the detailed analysis can be found in [19].

VI. RELATED WORK

Schema optimization for improving query performance has been studied in the database community for decades [27]–[30]. In recent years, the emergence of many large-scale knowledge graphs has drawn attention for schema optimization. In this section, we present important works in this field, highlighting the main differences to our approach.

Schema Optimization in RDBMS/NoSQL. Schema design in relational database systems has been extensively studied [28], [29], [31]–[34]. RDBMSs provide a clean separation between logical and physical schemas. The logical schema includes a set of table definitions and determines a physical schema consisting of a set of base tables [28], [29], [31]. The physical layout of these base tables is then optimized with auxiliary data structures such as indexes and materialized views for the expected workload [31], [33]. Typically, the physical design often involves identifying candidate physical structures and selects a good subset of these candidates [34]. NoSE [30] is introduced to recommend schemas for NoSQL applications. Its cost-based approach utilizes an integer programming formulation to generate a schema based on the conceptual data model from the application.

In principle, our approach is similar to the logical schema design in RDBMSs, which defers the physical design to the underlying graph systems. Other than that, our approach is different from the above methods since the data modeling for graphs is inherently different from the relational data model. Specifically, the graph structure results in more expressive data models than those produced using relational databases, allowing the formation of graph queries (e.g., reachability, path finding, pattern matching) in a very intuitive fashion. Moreover, our approach exploits the rich semantic information available in an ontology to drive the schema optimization, which is not considered by any of the previous works.

Schema Optimization in Knowledge Graphs. In the last few years, RDF has been growing significantly for expressing graph data. A variety of schemas have been proposed for physically storing graph data in both centralized and distributed settings [9], [10], [12], [35]–[40]. Some of these works focus on optimizing RDF data storage and SPARQL queries based on either workload statistics [9], [10], [36], [37] or heuristics [11]. A fundamental difference to those works is that we neither re-load the data to follow a new schema, nor build new indices, nor optimize the queries on-the-fly (e.g., join reordering). Instead, inspired by database literature as stated above, we provide an optimized property graph schema design before loading the data, and directly instantiate a property graph conforming to this schema on a graph database. Graph queries are then executed on the graph database, where graph query optimization techniques can be further utilized.

Other works [12], [38]–[40] attempt to transform RDF data into relational data and provide SPARQL views over relational schemas, leveraging the many years of experience in RDBMS schema optimization. Unlike those approaches, we do not create views over a property graph. Instead, we directly express property graph queries in Cypher or Gremlin over optimized property graphs. Whether a graph database internally uses views or not for query optimization is orthogonal to this work. Thakkar [41] introduces Gremlinator, a SPARQL-to-Gremlin translator, to enable users to query property graph systems using SPARQL. However, it does not optimize the graph stored in the graph database. We see Gremlinator as a complementary work that could potentially exploit our work to provide a SPARQL interface over an optimized property graph schema.

Recently, works such as [5], [8], [42], [43] address a similar problem in the context of property graphs. GRFu-
VII. CONCLUSIONS

To the best of our knowledge, our ontology-driven approach is the first to address the property graph schema optimization problem for domain-specific knowledge graphs. Our approach takes advantages of the rich semantic information in an ontology to drive the property graph schema optimization. The produced schemas gain up to 3 orders of magnitude graph query performance speed-up compared to a direct mapping approach in two real-world knowledge graphs.

REFERENCES

