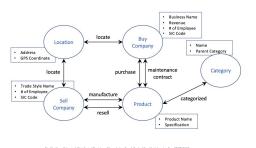
SEIGN: A Simple and Efficient Graph Neural Network for Large Dynamic Graphs

Xiao Qin¹, Nasrullah Sheikh², Chuan Lei¹, Berthold Reinwald² and Giacomo Domeniconi³

AWS AI Research and Education¹, IBM Research – Almaden², U.S. Bank³

amazon | science

Motivating Example



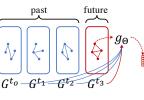
Discrete Time Dynamic Graphs (DTDGs)

Discrete-time Dynamic Graphs (DTDGs)

- $\begin{aligned} & \mathsf{G}^\mathsf{T} = (\mathsf{G}^{t0}, \, ..., \, \mathsf{G}^{tn}) & \text{\# a sequence of static graphs (snapshots)} \\ & \mathsf{G}^{ti} = \{\mathsf{V}^{ti}, \, \mathsf{E}^{ti}, \, \mathsf{X}^{ti}\} & \text{\# vertex, edge and feature sets} \end{aligned}$
- $V^{ti} = \{v_1, \dots, v_{|Vti|}\}$ # a set of nodes
- E^{ti} = {e1, ..., e|Eti|} # a set of edges

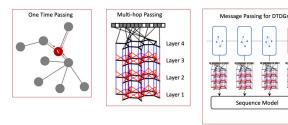
 $E^{ti} = \{e_1, ..., e_{|Eti|}\} \# a \text{ set of edges}$ $X^{ti} = \{x_1, ..., x_{|Vti|}\} \# a \text{ set of node features}$

□ Problem



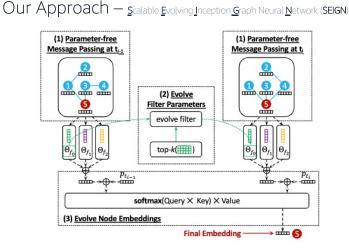
Learn the future node representation -- predicting the future based on the past.

Existing Message Passing-based Solutions

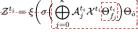


Question 1. How can the model be efficiently trained on large-scale DTDGs to exploit hardware accelerators with small memory footprint?

Question 2. How can the model effectively capture the changing dynamics of the graphs?



Parameter-free Message Passing



 $\mathcal{A}_{j}^{t_{i}}$ is a linear diffusion operator.

 $\mathcal{A}_{j}^{t_{i}}\mathcal{X}^{t_{i}}$ computes the node aggregated messages for j^{th} hop. The computation does not involve learnable parameters. Therefore, such a message passing can be done in a preprocessing step.

Benefit: 1) less node dependencies 2) less parameters to train

The embeddings Z^{t_i} for a snapshot are generated based on a set of graph diffusion operations covering multiple neighborhood sizes, analogous to the popular Inception network.

Benefit: better embedding expressivity

Evolving Parameters over Time

 $\Theta_{f_j}^{t_i}$ is a learnable matrix that transforms the node aggregated messages for $j^{\rm th}$ hop. Sharing these parameters across time results in poor performance. We propose to use a sequence model to regulate them over time.

Benefit: better embedding expressivity

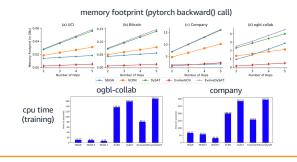
Evolving Node Embedding over Time

 $\mathcal{Z}_v=\{z_v^{t_0}+p_{t_0},\cdots,z_v^{t_{|\mathcal{T}|}^i}+p_{t_{|\mathcal{T}|}}\}$ is the concatenated node and positional embeddings for node v over time. We propose to use the self-attention model to generate the final embedding for v from its embeddings over time.

Benefit: better embedding expressivity

Experimental Evaluation

Methods	UCI			Bitcoin			Company			ogbl-collab		
	AUC↑	AP↑	F1 ^(0.5)	AUC↑	AP↑	F1^(0.5)	AUC↑	AP↑	F1 ^(0.5)	AUC↑	AP↑	F1†(0.5)
GCN GAT SIGN	68.62±3.2	67.75±3.0	$61.93{\pm}2.8$	$\substack{83.58 \pm 1.2 \\ 84.25 \pm 0.6 \\ 87.03 \pm 0.1 }$	$83.62{\pm}0.6$	79.80±0.4	84.10 ± 1.2	$81.84 {\pm} 0.9$	77.82±1.0	92.79±0.3	92.88±0.3	88.59±0
GCRN DySAT				$_{\substack{87.81\pm0.2\\88.82\pm0.1}}^{87.81\pm0.2}$								
EvolveGCN	$76.09{\pm}1.0$	$75.65{\scriptstyle\pm0.9}$	$71.07{\pm}0.9$	$85.53{\scriptstyle\pm0.4}$	$84.82{\pm}0.5$	$79.23{\scriptstyle\pm0.3}$	$89.22{\pm}0.1$	$86.40{\scriptstyle \pm 0.2}$	$79.84{\scriptstyle\pm0.1}$	$96.06{\scriptstyle\pm0.2}$	$95.61{\pm}0.2$	91.01±0
EvolveDySAT SEIGN-P SEIGN-T SEIGN	$\substack{79.82 \pm 0.5 \\ 76.86 \pm 0.3}$	$\substack{78.55 \pm 0.4 \\ 72.49 \pm 0.2}$	75.44 ± 0.4 73.08 ± 0.2	$\substack{89.38 \pm 0.1 \\ 88.44 \pm 0.1 \\ 88.51 \pm 0.2 \\ \textbf{90.12} \pm 0.0 }$	$_{86.56\pm0.2}^{87.04\pm0.1}$	$\substack{83.61 \pm 0.2 \\ 84.41 \pm 0.1}$	$\substack{93.35 \pm 0.1 \\ 93.26 \pm 0.2}$	$\substack{89.25 \pm 0.0 \\ 88.28 \pm 0.2}$	$\substack{87.35 \pm 0.0 \\ 86.86 \pm 0.1}$	$\begin{array}{c} 97.50 {\pm} 0.1 \\ 97.35 {\pm} 0.1 \end{array}$	$97.34 {\pm} 0.1$ $96.62 {\pm} 0.1$	86.78±0. 82.20±0.



Conclusion

- We introduce a simple and efficient representation learning method for DTDGs.
- We propose to simultaneously evolve the graph model parameters and the
 - representations from each graph snapshot to effectively capture the changing dynamics of the DTDGs.
- We further introduce an evolving graph inception architecture in SEIGN for DTDGs which enables efficient graph mini-batch construction and incurs a considerably lower training memory footprint.
- We evaluate the effectiveness of SEIGN in a position study and an ablation study. The position study compares our method against state-of-the-art approaches for an unsupervised training task on publicly available benchmarks as well as a real industrial dataset. We also demonstrate the efficiency of training SEIGN by providing various compute and memory profiles.