SEIGN: A Simple and Efficient Graph Neural Network for Large Dynamic Graphs

Xiao Qin	Nasrullah Sheikh	Chuan Lei	Berthold Reinwald	Giacomo Domeniconi
AWS	IBM Research	AWS	IBM Research	U.S. Bank

April 5th 2023 @ ICDE'23

- Background
 - Discrete Time Dynamic Graphs (DTDGs)
 - □ Graph Neural Networks for DTDGs
 - Research Challenges
- Our Approach SEIGN
 - Evolving Graph Model & Embedding
 - □ Inception Like Graph Neural Network
 - Parameter-free Message Passing
- Experimental Evaluation

Motivating Example – IT Procurement

Sheikh, Nasrullah, et al. Distributed Training of Knowledge Graph Embedding Models using Ray. EDBT 2022.

Background

□ Discrete Time Dynamic Graphs (DTDGs)

- □ Graph Neural Networks for DTDGs
- Research Challenges
- Our Approach SEIGN
 - Evolving Graph Model & Embedding
 - Inception Like Graph Neural Network
 - Parameter-free Message Passing

Background – Discrete Time Dynamic Graphs (DTDGs)

Discrete-time Dynamic Graphs (DTDGs)

 $G^{T} = (G^{t0}, ..., G^{tn})$ # a sequence of static graphs (snapshots)

G^{ti} = {V^{ti}, E^{ti}, X^{ti}} # vertex, edge and feature sets

 V^{ti} = {v₁, ..., v_{|Vti|}} # a set of nodes

 $E^{ti} = \{e_1, ..., e_{|Eti|}\}$ # a set of edges

 $X^{ti} = \{x_1, ..., x_{|Vti|}\}$ # a set of node features

Task

Learn the future node representation – predicting the future based on the past.

Background

Discrete Time Dynamic Graphs (DTDGs)

□ Graph Neural Networks for DTDGs

Research Challenges

Our Approach – SEIGN

- Evolving Graph Model & Embedding
- Inception Like Graph Neural Network
- Parameter-free Message Passing

Background – Graph Neural Networks for DTDGs

Message passing-based methods

Background

Discrete Time Dynamic Graphs (DTDGs)

□ Graph Neural Networks for DTDGs

Research Challenges

Our Approach – SEIGN

- Evolving Graph Model & Embedding
- Inception Like Graph Neural Network
- Parameter-free Message Passing

Background – Research Challenges

Q1. How can the model be efficiently trained on large-scale DTDGs to exploit hardware accelerators with small memory footprint?

Q2. How can the model effectively capture the changing dynamics of the graphs?

Background

- Discrete Time Dynamic Graphs (DTDGs)
- □ Graph Neural Networks for DTDGs
- Research Challenges

Our Approach – SEIGN

- Evolving Graph Model & Embedding
- Inception Like Graph Neural Network
- Parameter-free Message Passing

SEIGN Approach – A Quick Overview

<u>S</u>calable <u>E</u>volving <u>I</u>nception <u>G</u>raph Neural <u>N</u>etwork (SEIGN)

An example of how v_5 's (red 5) embedding is generated in 3 steps:

- 1. It participates in message passing (in every snapshot).
- 2. Its embedding for each snapshot is generated.

3. Its final embedding, taking all its embeddings from different snapshot into consideration, is generated for the downstream task.

Background

- Discrete Time Dynamic Graphs (DTDGs)
- □ Graph Neural Networks for DTDGs
- Research Challenges
- Our Approach SEIGN
 - Evolving Graph Model & Embedding
 - Inception Like Graph Neural Network
 - Parameter-free Message Passing

SEIGN Approach – Evolving Graph Model & Embedding

An answer to Q2 (effectiveness):

1. Evolve the node embedding

SEIGN uses self-attention mechanism to generate the final node embedding which summarize the embedding sequence.

2. Evolve the model parameters

aws

SEIGN uses gated recurrent unit (GRU) to predict new model parameters based on the previous model parameters.

(We are going to talk about the model parameters next)

Background

- Discrete Time Dynamic Graphs (DTDGs)
- □ Graph Neural Networks for DTDGs
- Research Challenges

Our Approach – SEIGN

- Evolving Graph Model & Embedding
- □ Inception Like Graph Neural Network
- Parameter-free Message Passing

SEIGN Approach – Inception Like Graph Neural Network

Another answer to Q2 (effectiveness):

This design improves the model accuracy by combining 0 – k hop message passing results instead of using only the k-hop message passing result.

Parameters:

aws

A set of learnable matrices that transform message passing results for each hop.

This sounds like a good idea for improving the accuracy. But don't we make the model more complex just now? What about the scalability?

Background

- Discrete Time Dynamic Graphs (DTDGs)
- □ Graph Neural Networks for DTDGs
- Research Challenges

Our Approach – SEIGN

- Evolving Graph Model & Embedding
- Inception Like Graph Neural Network
- Parameter-free Message Passing

SEIGN Approach – Parameter-free Message Passing

An answer to Q1 (efficiency):

X' = AX, where X is a linear diffusion operator How does this help?

1. Fewer parameters 2. Less node dependencies

after

Background

- Discrete Time Dynamic Graphs (DTDGs)
- □ Graph Neural Networks for DTDGs
- Research Challenges
- Our Approach SEIGN
 - Evolving Graph Model & Embedding
 - Inception Like Graph Neural Network
 - Parameter-free Message Passing

Experimental Evaluation – Setup

Task: Link Prediction

$$=-\sum_{(v_i,v_j)\in\mathcal{E}^{t_k}}\log(\sigma(g_{\Theta}(v_i) op g_{\Theta}(v_j))) \ -\sum_{(v_m,v_n)
ot\in\mathcal{E}^{t_k}}\log(\sigma(g_{\Theta}(v_m) op g_{\Theta}(v_n))),$$

	Dataset	UCI	Bitcoin	Company	ogbl- collab
Datasets:	# of nodes	1,899	5,881	24,108	235,868
	# of edges	59,835	35,591	499,511	1,285,465
	feature dim	128	128	768	128
	# of snapshots	13	14	21	32
	train/valid/test snapshots	10/2/2	9/2/2	17/2/2	28/2/2

L

Baselines:

- □ Shared GNN: GCN, GAT, SIGN
- □ GNN-to-sequence: DySAT
- □ Sequence-to-GNN: EvolveGCN

Experimental Evaluation – Effectiveness

Baseline Comparison & Ablation Study

	UCI		Bitcoin		Company			ogbl-collab				
Methods	AUC↑	AP↑	F1↑(0.5)	AUC↑	AP↑	F1↑(0.5)	AUC↑	AP↑	F1↑(0.5)	AUC↑	AP↑	F1↑(0.5)
GCN GAT SIGN	$74.35{\pm}1.8\\68.62{\pm}3.2\\74.98{\pm}0.3$	$74.96{\pm}1.2 \\ 67.75{\pm}3.0 \\ 69.92{\pm}0.4$	$\begin{array}{c} 68.90{\pm}0.9\\ 61.93{\pm}2.8\\ 74.54{\pm}0.2\end{array}$	$\begin{array}{c} 83.58{\pm}1.2\\ 84.25{\pm}0.6\\ 87.03{\pm}0.1\end{array}$	$\begin{array}{c} 84.68 {\pm} 1.1 \\ 83.62 {\pm} 0.6 \\ 85.70 {\pm} 0.1 \end{array}$	$77.86 {\pm} 0.8 \\79.80 {\pm} 0.4 \\\textbf{84.89} {\pm} 0.2$	$\begin{array}{c} 88.75 {\pm} 0.3 \\ 84.10 {\pm} 1.2 \\ 92.72 {\pm} 0.1 \end{array}$	85.15 ± 0.4 81.84 ± 0.9 89.11 ± 0.1	$\begin{array}{c} 82.14{\pm}0.3\\ 77.82{\pm}1.0\\ 86.22{\pm}0.2\end{array}$	$\begin{array}{c} 93.45{\pm}0.1\\ 92.79{\pm}0.3\\ 97.07{\pm}0.0\end{array}$	$\begin{array}{c} 93.29{\pm}0.0\\ 92.88{\pm}0.3\\ 96.10{\pm}0.1\end{array}$	87.98 ± 0.1 88.59 ± 0.2 82.80 ± 0.1
GCRN DySAT	77.21 ± 0.7 77.46 ± 0.6	$75.28{\pm}0.8 \\ 76.54{\pm}0.6$	$74.19{\pm}0.7 \\ 73.06{\pm}0.7$	$87.81{\pm}0.2$ $88.82{\pm}0.1$	$\begin{array}{c} 88.02{\pm}0.2\\ 88.19{\pm}0.2\end{array}$	$\begin{array}{c} 80.21{\pm}0.2\\ 82.01{\pm}0.2\end{array}$	91.65 ± 0.2 92.45 ± 0.0	$\begin{array}{c} 87.05{\pm}0.2\\ 88.07{\pm}0.1\end{array}$	$84.71 {\pm} 0.2$ $86.10 {\pm} 0.0$	$96.47{\pm}0.0$ $95.18{\pm}0.2$	$96.18 {\pm} 0.1$ $95.05 {\pm} 0.3$	84.54 ± 0.2 87.34 ± 0.1
EvolveGCN	76.09±1.0	75.65±0.9	71.07±0.9	85.53±0.4	84.82±0.5	79.23±0.3	89.22±0.1	86.40±0.2	79.84±0.1	96.06±0.2	95.61±0.2	91.01 ±0.3
EvolveDySAT SEIGN-P SEIGN-T SEIGN	$\begin{array}{c} 80.49 {\pm} 0.6 \\ 79.82 {\pm} 0.5 \\ 76.86 {\pm} 0.3 \\ \textbf{80.83} {\pm} 0.3 \end{array}$	$\begin{array}{c} 78.08 {\pm} 0.7 \\ 78.55 {\pm} 0.4 \\ 72.49 {\pm} 0.2 \\ \textbf{81.36} {\pm} 0.2 \end{array}$	$\begin{array}{c} 74.02{\pm}0.4\\ \textbf{75.44}{\pm}0.4\\ 73.08{\pm}0.2\\ 71.81{\pm}0.2\end{array}$	$\begin{array}{c} 89.38{\pm}0.1\\ 88.44{\pm}0.1\\ 88.51{\pm}0.2\\ \textbf{90.12}{\pm}0.0\end{array}$	$\begin{array}{c} 90.12{\pm}0.0\\ 87.04{\pm}0.1\\ 86.56{\pm}0.2\\ \textbf{91.13}{\pm}0.1\end{array}$	$\begin{array}{c} 76.32{\pm}0.1\\ 83.61{\pm}0.2\\ 84.41{\pm}0.1\\ 81.89{\pm}0.1 \end{array}$	$\begin{array}{c} 92.78 {\pm} 0.0 \\ 93.35 {\pm} 0.1 \\ 93.26 {\pm} 0.2 \\ \textbf{94.34} {\pm} 0.1 \end{array}$	$\begin{array}{c} 88.78 {\pm} 0.0 \\ 89.25 {\pm} 0.0 \\ 88.28 {\pm} 0.2 \\ \textbf{90.09} {\pm} 0.1 \end{array}$	$\begin{array}{c} 86.25{\pm}0.1\\ 87.35{\pm}0.0\\ 86.86{\pm}0.1\\ \textbf{88.39}{\pm}0.1\end{array}$	$\begin{array}{c} 96.09{\pm}0.0\\ 97.50{\pm}0.1\\ 97.35{\pm}0.1\\ \textbf{98.33}{\pm}0.1\end{array}$	$\begin{array}{c} 96.13 {\pm} 0.1 \\ 97.34 {\pm} 0.1 \\ 96.62 {\pm} 0.1 \\ \textbf{98.49} {\pm} 0.0 \end{array}$	$\begin{array}{r} 87.40 {\pm} 0.0 \\ 86.78 {\pm} 0.2 \\ 82.20 {\pm} 0.2 \\ 86.85 {\pm} 0.1 \end{array}$

Experimental Evaluation – Explosion of Neighborhood

Experimental Evaluation – Explosion of Neighborhood

memory footprint (pytorch backward() call)

Conclusion

- □ We introduce a simple and efficient representation learning method for DTDGs, called SEIGN.
- In our SEIGN neural network architecture, we propose to simultaneously evolve the graph model parameters and the representations from each graph snapshot to effectively capture the changing dynamics of the DTDGs.
- We further introduce an evolving graph inception architecture in SEIGN for DTDGs which enables efficient graph mini-batch construction and incurs a considerably lower training memory footprint.
- We evaluate the effectiveness of SEIGN in a position study and an ablation study. The position study compares our method against state-of-the-art approaches for an unsupervised training task on publicly available benchmarks as well as a real industrial dataset. We also demonstrate the efficiency of training SEIGN by providing various compute and memory profiles.

Thank you for listening! Do you have any question?

