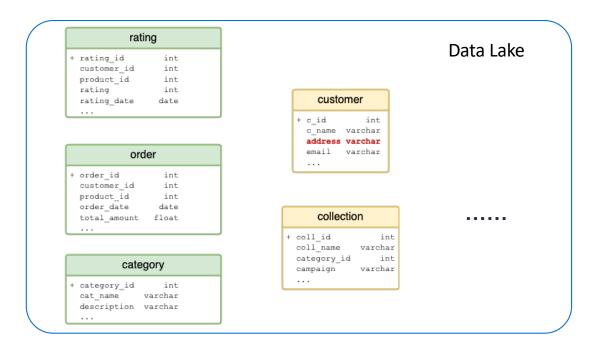
FEATPILOT: Automatic Feature Augmentation on Tabular Data

Jiaming Liang

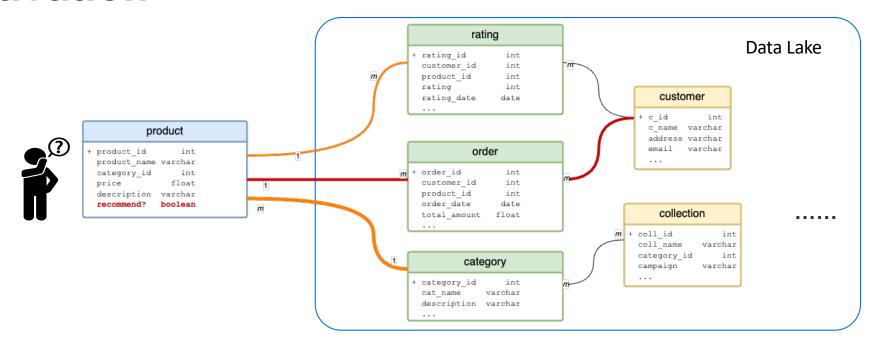
University of Pennsylvania liangim@seas.upenn.edu

Chuan Lei, Xiao Qin, Jiani Zhang, Asterios Katsifodimos, Christos Faloutsos, Huzefa Rangwala


Amazon Web Services

chuanlei, drxqin, zhajiani, akatsifo, faloutso, rhuzefa@amazon.com

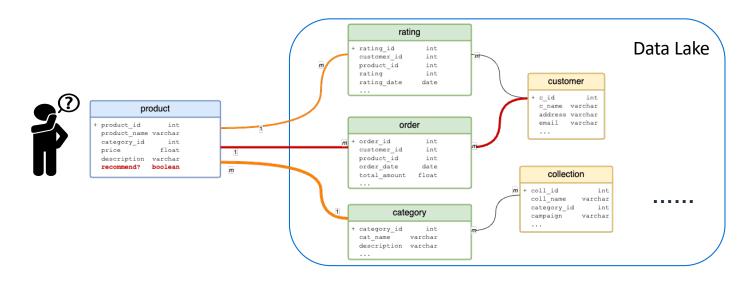
Motivation



- Informatics-driven decision making / data-centric ML
- Useful features live in massive enterprise/open data lake

Motivation

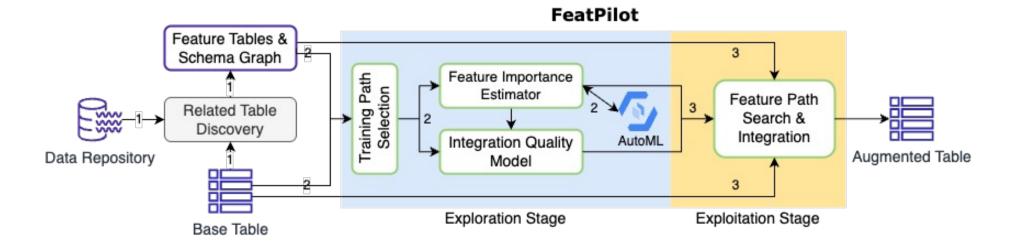
• Informatics-driven decision making / data-centric ML.



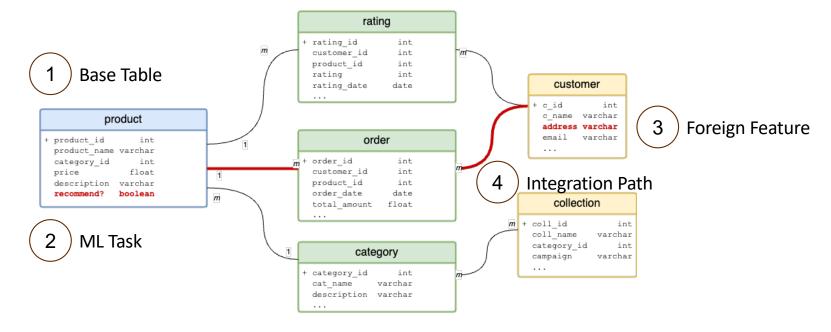
• Useful features live in massive enterprise/open data lake.

Automatic Feature Augmentation!

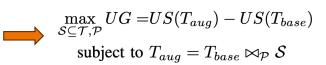
Challenges & Limitations


- Massive data
- Complex join relationship
- Massive feature combination
- ML task complexity

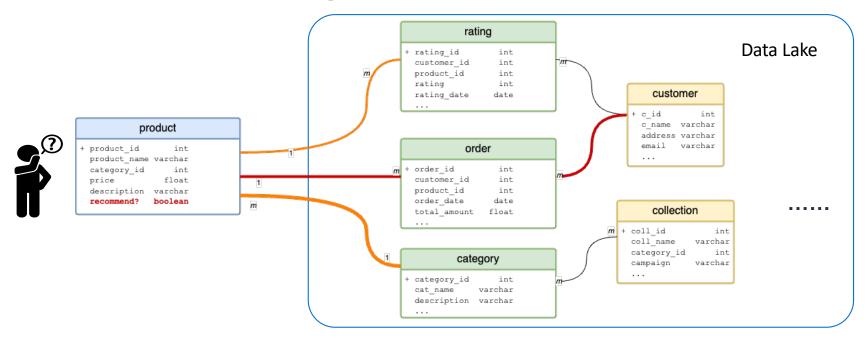
Massive search space!


Contributions

- A decomposition method for intractable feature augmentation tasks
- FeatPilot, an automatic feature augmentation system
- 10.27% ML performance over SOTA methods on six public datasets

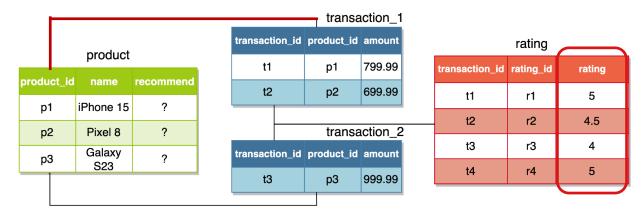


Problem Definition

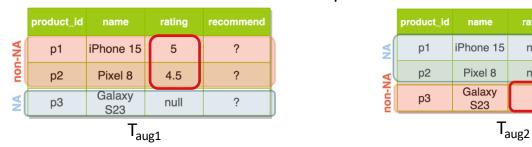

5 Utility Gain = Score(product ⋈ order ⋈ customer) - Score(product)

Objective: Maximize Utility Gain with an integration strategy

Key Idea: Accessing a feature's value


One feature's value

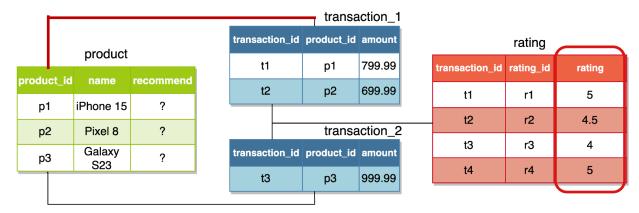
How many instances can get this feature? (Integration Quality: IQ)


The relationship between the feature and ML task. (Feature Importance: FI)

Key Idea: Integration Quality definition

Join Graph

Integration Quality: Percentage of instances getting the target feature


E.g.
$$IQ(T_{aug1}) = \frac{2}{3}$$

recommend

?

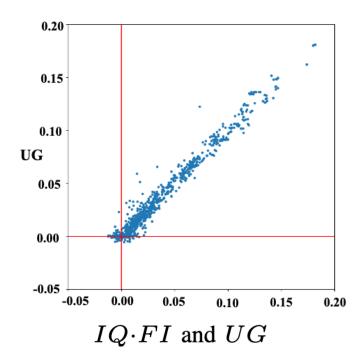
null

Key Idea: Integration Quality definition

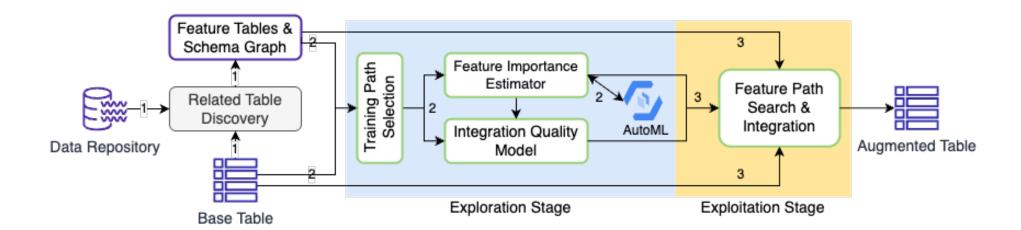
Join Graph

product_id	name	rating	recommend	
p1	iPhone 15	5	?	
p2	Pixel 8	4.5	?	
р3	Galaxy S23	4	?	

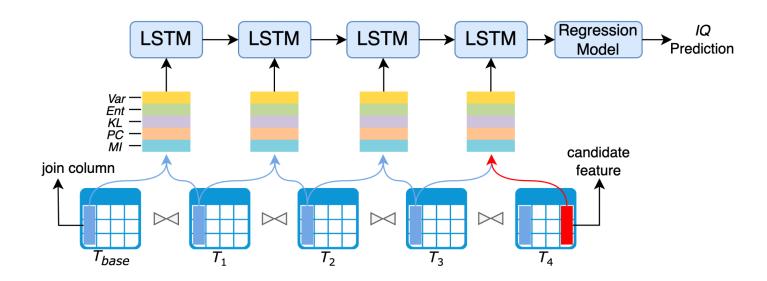
T_{virtual}: assuming the target feature can be fully filled.


Feature Importance: Utility Gain gets by Tvirtual

$$FI(rating) = UG(T_{virtual}) = Score(T_{virtual}) - Score(Base)$$


Key Idea: Utility Gain decomposition

$$UG(aug) = IQ(aug) * FI(target_feature)$$



Pipeline Overview

Method: Integration Quality Estimation

Intuition:

Inferencing IQ by pairwise table features and statistics, without join materialization.

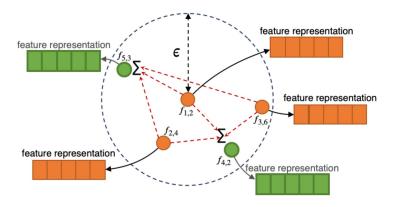
Variance

Entropy

KL-divergence

Pearson-correlation

Mutual-information

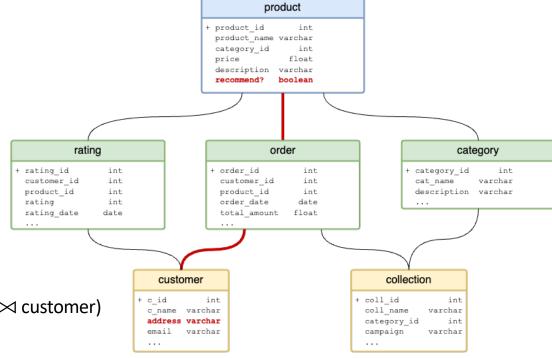


(Inspired by Liu et al., 2022)

Method: Feature Importance Estimation

Intuition: Similar feature should have similar Feature Importance

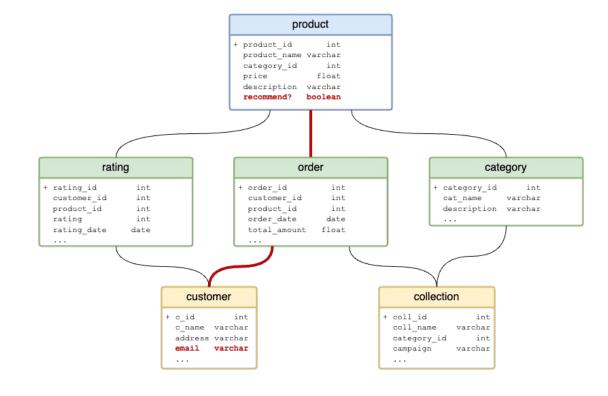
- 1. Feature Clustering
 - column metadata
 - column instances
- 2. Sample FI data points
- 3. Estimate unseen features



Method: Integration Strategies Search

Pruning Strategies:

Integration Quality monotonicity


IQ(product \bowtie order) >= IQ(product \bowtie order \bowtie customer)

Method: Integration Strategies Search

Pruning Strategies:

- Integration Quality monotonicity
- Feature Importance lower bound

© 2025, Amazon Web Services, Inc. or its affiliates.

Experiment Settings

Datasets

	Task	Metrics	# Tables	# Columns	Table Source
School	Classification	Accuracy	121	1,295	NYU Auctus
DonorsChoose	Classification	Accuracy	73	221	Kaggle
Diabetes	Classification	Accuracy	71	204	Kaggle
Fraud Detection	Classification	F1	81	254	Kaggle
Poverty	Regression	MAE	98	408	NYU Auctus
Air	Regression	MSE	75	603	NYU Auctus

Experiment Settings

Baselines

- Exhaustive Search
- J. M. Kanter *et al.* (*IEEE DSAA*, 2015)
- N. Chepurko et al. (VLDB, 2020)
- J. Liu et al. (ICDE, 2022)
- S. Galhotra et al. (ICDE, 2023)
- A. Ionescu et al. (ICDE, 2024)

Experiment Results

Datasets	Metrics	Feature Budgets	Methods						
			Exhaustive	DFS	ARDA	AutoFeature	AutoFeat	METAM	FEATPILOT
School		1	0.704(4)	0.704(4)	0.697(7)	0.708(3)	0.704(4)	0.790(2)	0.823(1)
	Accuracy	5	0.730(4)	0.700(7)	0.808(2)	0.704(6)	0.710(5)	0.801(3)	0.891 (1)
		10	0.704(6)	0.692(7)	0.794(3)	0.723(4)	0.718(5)	0.816(2)	0.880 (1)
DonorsChoose		1	0.682(4)	0.656(5)	0.856 (1)	0.708(3)	0.656(5)	0.656(5)	0.822(2)
	Accuracy	5	0.834(4)	0.820(5)	0.890(2)	0.852(3)	0.681(6)	0.659(7)	0.954 (1)
		10	0.837(5)	0.854(4)	0.901(2)	0.896(3)	0.818(7)	0.820(6)	0.961 (1)
Diabetes		1	0.521(6)	0.521(6)	0.525(4)	0.585(3)	0.525(4)	0.616(2)	0.678 (1)
	Accuracy	5	0.740(2)	0.631(5)	0.584(7)	0.649(3)	0.605(6)	0.647(4)	0.742 (1)
		10	0.746 (1)	0.647(5)	0.616(7)	0.651(4)	0.618(6)	0.655(3)	0.744(2)
Fraud Detection		1	0.325(4)	0.068(7)	0.416(3)	0.145(6)	0.296(5)	0.437 (1)	0.435(2)
	F1	5	0.440(3)	0.070(7)	0.422(4)	0.152(6)	0.422(4)	0.446(2)	0.493 (1)
		10	0.517(2)	0.084(7)	0.450(4)	0.162(6)	0.441(5)	0.464(3)	0.540 (1)
Poverty		1	8781.90 (2)	13620.14 (7)	12389.54 (3)	13532.57 (6)	12944.16(4)	13077.66 (5)	8222.34 (1)
	MAE	5	7373.94 (2)	13410.07 (6)	12389.54 (3)	13532.57 (7)	12558.93(4)	12956.29 (5)	7322.44 (1)
		10	7309.52 (2)	13077.66 (6)	12164.23 (4)	13411.85 (7)	11213.23(3)	12786.82 (5)	7182.38 (1)
Air		1	1.201 (7)	1.184 (5)	0.969 (1)	1.259 (6)	1.061(4)	1.101 (2)	1.101 (2)
	MSE	5	0.983 (5)	0.985 (6)	0.793 (2)	1.219 (7)	0.915(4)	0.900 (3)	0.762 (1)
		10	0.873(5)	0.943 (6)	0.761 (2)	1.202 (7)	0.820(4)	0.762 (3)	0.715 (1)

© 2025, Amazon Web Services, Inc. or its affiliates.