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Abstract—Advances in the adoption of business process
management platforms have led to increasing volumes runtime
event logs, containing information about the execution of
the process. Business users analyze this event data for real-
time insights on performance and optimization opportunities.
However, querying the event data is difficult for business users
without knowing the details of the backend store, data schema,
and query languages. Consequently, the business insights are
mostly limited to static dashboards, only capturing predefined
performance metrics. In this paper, we introduce an interface
for business users to query the business event data using natural
language, without knowing the exact schema of the event data
or the query language. Moreover, we propose a bootstrapping
pipeline, which utilizes both event data and business domain-
specific artifacts to automatically instantiate the natural lan-
guage interface over the event data. We build and evaluate our
prototype over datasets from both practical projects and public
challenge events data stored in Elasticsearch. Experimental
results show that our system produces an average accuracy
of 80% across all data sets, with high precision ( 91%) and
good recall ( 81%).

Keywords-Natural Language Querying; Process Automation;
Workflow; Business Automation Insights

I. INTRODUCTION

Business process frameworks have become a cornerstone
for enterprise operations including loan origination, loan val-
idation, invoice management, and insurance claims process-
ing [1]. Companies are deploying applications that automate
their business processes with reduced cost and better cus-
tomer experience. These applications generate high-volume
event logs1, which contain rich information about multiple
stages of process workflows, such as their assignment, their
sequence of executions, and past and current status. These
event logs in turn are used by business intelligence (BI)
systems to generate reports or dashboards summarizing key
performance indicators (KPI) and other metrics [2].

Given the popularity of business process applications,
there is a greater need for business users to analyze event
logs to get operational and business insights. However,
accessing and querying event logs come with non-trivial
challenges. Event logs are usually opaque to business users
because they follow a specific structure, which is tightly
coupled with the process workflow and log structure. Also,
the event logs from process automation can be stored in
various backend data stores, such as Elasticsearch, HDFS, or
relational databases. All these backends only support a very

1We use event log and event data interchangeably in this paper.

specific set of query languages with which non-technical
users are not familiar. Hence, the access and usage of event
logs by non-technical business users are greatly limited, even
though they have prevalent need for insight generations from
these event logs. Today, the insight generation is mostly
limited to a set of static dashboards which are predefined by
technical analysts to measure a very specific set of business
KPIs.

Recent advances in natural language understanding and
processing, as well as the advent of chatbots, have fu-
eled a renewed interest in Natural Language Interfaces to
Databases (NLIDB) [3]. These NLIDB systems [4], [5]
allow non-technical users to explore the database using
natural language queries (NLQs) without knowing specific
query languages or the exact schema of the underlying
data. The core challenges of building an NLIDB system are
understanding the semantics of the natural language query,
i.e., the user intent, and then generating the correct query
corresponding to the intent to retrieve the data from the
backend store. Unfortunately, none of the existing systems
are specifically designed for querying process automation
data.

Challenges. To fill the gap between process automation
data (i.e., event logs) and the NLIDB systems, we chose to
use a state-of-the-art NLIDB system ATHENA [5] which has
a modular end-to-end pipeline for querying databases, thus
making it suitable to customize for applications. However
in order to instantiate ATHENA over process automation
data we still need to tackle the following challenges. First,
ATHENA uses domain ontologies to understand a domain.
Hence, it is imperative to produce an ontology that cap-
tures the relevant domain semantics of process automation.
Second, process automation data are typically stored in
NoSQL backend data stores, which provide flexible schemas
for the storage and retrieval of data. Hence we need to
extend ATHENA, to support the query language used in the
NoSQL backend. Third, like most of the NLIDB systems,
instantiating ATHENA also involves non-trivial amount of
manual effort, which makes domain adaptation cumbersome.
Therefore, we need a solution to automatically generate the
required system configurations to instantiate ATHENA over
the process automation data.

Contributions. In this paper, our contributions can be
summarized as follows.
• We extend the state-of-the-art NLIDB system

ATHENA [5], which utilizes domain ontologies to
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capture the domain semantics, with a new query
translator to support querying process automation data
stored in Elasticsearch.

• We introduce an ontology generation method that de-
rives a domain ontology from the process automation
data and further enriches the ontology with business
specific terminologies and vocabularies from domain
artifacts.

• We design a bootstrapping pipeline that utilizes the
ontology derived from process automation data and
automatically instantiates each component in ATHENA
with domain-specific configurations, which enables
easy domain adaptation and automated setting up of
ATHENA.

• We evaluate our system using publicly available event
logs from BPI’2017 challenge [6] and Statechart [7],
as well as three other running applications used in
practice. Experimental results show that our system
produces an average accuracy of 80% across all data
sets, with high precision ( 91%) and acceptable recall
( 81%). We also do a thorough user study which
confirms that our system can effectively support a
wide range of queries for insight generation and so is
perceived as a novel and useful application over process
automation.

II. BACKGROUND

We chose to use a state-of-the-art system NLIDB system
ATHENA as the backbone over which we build our auto-
ingestion pipeline to bootstrap natural language querying
engine for process automation data. ATHENA has a modular
architecture of sequential connected components. This al-
lowed us to treat each of ATHENA’s component as a service
and develop our auto-ingestion pipeline as an orchestrator
over them. In this section, we briefly go through the indi-
vidual components of ATHENA - which are (1) Ontology
(2) Query Interpretation (3) Query Translation. 2

A. Ontology

The domain ontology is a central piece in ATHENA,
which captures a semantic description of the domain in terms
of the entities and their relationships relevant to the domain.

Figure 1 A Snapshot of Loan Validation ODM Process
Ontology

2We were granted access to ATHENA’s code base by ATHENA authors,
which we have reused in our current work.

Figure 1 shows a snapshot of the ontology derived from
event data generated by ODM process automation for loan
validation. Some of the concepts included in this ontology
are Borrower and Loan. Each concept has a set of proper-
ties. For example, the concept Borrower has the properties
firstName, lastName, birthdate, and zipcode. The concepts in
and out correspond to the input and output of ODM decision
services for loan validation. The edge between Borrower
and in signifies that there is a relation between those two
concepts, since Borrower information is used as an input to
ODM decision services.

B. ATHENA – Query Interpretation.
Given a natural language query (NLQ), ATHENA parses

and annotates the query to produce evidence that one or
more ontology elements have been referenced in the input. A
lookup index is created over the back-end data to detect men-
tion of data instances too (e.g. a Person name like “John”).
Moreover, ATHENA also employs a set of annotators to
detect signals of specific operations like aggregation, time
phrase mention, group by, etc. to unambiguously identify
the role of each relevant word in the target query clause.
Figure 2 is an example query along with its annotations.

Figure 2 NLQ Annotations (Best Viewed in Color)

After the evidence annotations, ATHENA uses a Steiner
Tree-based algorithm [5] to produce the optimal join paths
between the individual ontology elements as referred by
the NL query. It produces an interpretation tree (ITree) for
the given NLQ. This (ITree) and the clause level evidence
annotations are used to produce a unique OQL (Ontology
Query Language) query that represents the NL query intent.
OQL is syntactically similar to back-end query languages
such as SQL, except that OQL is agnostic to backend stores,
and is defined over the domain ontology. We show the OQL
query corresponding to the NLQ in Figure 2 below.

SELECT AVG(oLoan.amount), oBorrower.zipcode
FROM Loan oLoan, Borrower oBorrower
WHERE oLoan.startDate >= 01-01-2019,

oLoan.startDate <= 31-12-2019,
oBorrower.firstName = “John”,
oBorrower.lastName = “Doe”,
oBorrower−→ report borrower−→ report loan =
oloan,

GROUP BY oBorrower.zipcode

C. ATHENA – Query Translation
The OQL query is expressed against the ontology in

terms of concepts, data properties and their relationships.
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The query translator utilizes a pre-defined mapping between
these ontology elements and the elements of the physical
schema in which the data is stored to generate the target
language query. The query translation process at a high level
considers the various clauses of the OQL query like select,
aggregation, where, groupby etc. and translates them into
an appropriate query structure in the target query language
that provides an equivalent query functionality. In this paper,
we propose an elaborate algorithm to produce OQL-DSL
translator (in Section III-D).

III. SYSTEM DESIGN

A. System Overview
Figure 3 shows the overall system architecture of our auto-

ingestion pipeline for instantiating ATHENA components
over BAI event data (in JSON) stored in Elasticsearch.

Figure 3 System Architecture

Our auto-ingestion pipeline derives an ontology from the
event data (in JSON) stored in Elasticsearch and processes
specific artifacts like BPM process models, ODM .bom/.voc
files etc.. It uploads the derived ontology into the ontology
service so that the ontology can be accessible by the query
interpretation and the query translation components. Second,
the auto-ingestion pipeline infers more process model spe-
cific configurations relevant for natural language querying
and passes this as process specific configurations to the
query interpretation component. Third, the auto-ingestion
pipeline also derives the mapping between the ontology
elements and their corresponding paths as JSON keys in
the event data stored in Elasticsearch. This completes the
bootstrapping and instantiation of each individual compo-
nents in ATHENA. At query time, user queries are translated
into DSL queries and executed on BAI events stored in
Elasticsearch to retrieve the results.

In the following sections, we specifically focus on the
main contributions of this paper as (1) Ontology generation
from event data (2) Extracting process specific information
from process models/artifacts and (3) Algorithm to translate
an OQL query produced by ATHENA which is back-end
agnostic to an executable DSL query on Elasticsearch.

B. Ontology Generation
Ontology generation happens in two phases. First we

analyse the BAI event data structure to extract the schema
of the back-end data and use it to model the concepts
and relations in the ontology. Next, we also utilize the
domain specific artifacts to semantically enrich the ontology

for understanding process automation specific details. In
this section, we describe the ontology generation process
from the BAI event data (i.e., JSON documents) stored in
Elasticsearch. There are two primary challenges for deriving
ontology from the BAI event data.
•Schema discovery. Each JSON document can be viewed

as a set of key-value pairs. Each key represents a particular
field name, and the value can be either a scalar such as a
string, integer, etc., or a JSON object (implying a nesting
within the JSON document), or a JSON array of values
(recursively defined). Note that the structure of event JSONs
may have the same, disjoint or overlapping schema depend-
ing on its origin and domain. We extract the individual
structures from each JSON document, in the form of a
schema tree where individual nodes represent JSON objects,
arrays or literals, and each root to leaf path represents a
unique path in the tree. Individual schema tree paths are
then merged in the from of a data guide [8] to represent
the overall schema of the data set, containing heterogeneous
JSON structures. This schema is then used to derive an
ontology. This helps us in discovering a schema that covers
the structure of the entire set of event data.
•Concept and relationship inference. The second chal-

lenge in ontology generation is to identify the concepts, the
properties associated with each concept and the relationships
between these concepts. Algorithm 1 describes the ontology
generation process from the event JSON. Intuitively, it
applies the following rules on each path of the schema guide.

1) Path A.b: Concept A, Property b of A.
2) Path A.B.c: Concept A, Concept B, Property c of B,

Relation A−→ B.

While creating a relationship between two concepts, we
also consider the type of the new concept. If the new concept
is a JSON object, the cardinality of the relationship is 1 : 1.
If the new concept is a JSON array, the cardinality is 1 : m,
where m is the length of the JSON array. We skip these
details in Algorithm 1 for simplicity. The JSON object
associated with the new concept is traversed recursively to
expand the ontology with that JSON object as the root (Line
10). The algorithm keeps track of the JSON keys traversed
for reaching the new concept, and maintains a mapping
between JSON key paths to ontology concepts (Line 9).
This mapping is used for query translation as described in
Section III-D. Figure 4 shows the ontology generated from
the schema tree extracted across all JSON documents in the
event data collected for odm-loan validation domain(more
on it in Section IV).

C. Process Specific Configurations
The process specific artifacts differ depending on the un-

derlying process automation model. We discuss the usage of
process specific artifacts for both BPM and ODM processes.
•BPM: Process model is an important artifact which

contains information about various activities and how they
are sequenced in a process life cycle. Figure 5 shows BPM
process model of Travel Pre-approval. We utilize the process
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Algorithm 1: Ontology Generation
Input: JSONObject rootJSON, Concept rootConcept, String keyPath
Output: Ontology O, Map[Concept, String] mapping

1 O.addConcept(rootConcept)
2 foreach Key ∈ rootJSON.keys do
3 if rootJSON.get(key) is Literal then
4 rootConcept.addProperty(rootJSON.get(key))

5 if rootJSON.get(key) is JSONObject | JSONArray then
6 Concept newKeyConcept = new Concept()
7 rootConcept.addRelation(newKeyConcept)
8 String newConceptPath = keyPath + “.” + key;
9 mapping.put(newKeyConcept,newConceptPath)

10 Ontology subOntology =
DeriveOntologyFromJSON(rootJSON.get(key),
newKeyConcept, newConceptPath)

11 O.include(subOntology)

12 Return O, mapping

Figure 4 Ontology Generation for ODM-LoanValidation

Figure 5 BPM Process Model for Travel Pre-approval

model to extract the following information:
(1) Activity Names: We extract the different activity names
from the process model to index for natural language
querying. From Figure 5 the activity names are Travel pre-
approval application, applicant-revise application and so on.
(2) Activity Sequence: The BPM process model also cap-
tures the sequence in which these activities can occur in
a process life cycle. We use the sequence edges between
activities to topologically sort the activities and maintain
an ordered list of pre-defined activities. This is useful for
answering queries asking for events before or after a specific
activity.
(3) Roles: The BPM process model also has a role in-
formation associated with each activity. For example, as
seen in Figure 5, a Manager role performs Manager-review
application and Manager-revise application. The mapping
from role to activity helps in answering natural language
queries involving roles such as ”what are the active events
for manager roles”.

•ODM : We have worked with running ODM processes
instantiated from IBM ODM decision services [9] where
.bom [10] and .voc [11] files are key domain artifacts. A
.bom file describes the domain in terms of entities and

their attributes, whereas a .voc file defines the business
vocabularies associated with those domain elements. We
parse the .bom file to identify the concepts and their at-
tributes along with their datatype. We augment the ontology
derived from event data for any missing concept, attribute
or its datatype. Furthermore, we exploit the natural lan-
guage phrases represented as verbalization examples [12]
associated with each concept and property in the artifact as
synonyms for the corresponding concepts and properties in
the derived ontology. These synonyms enrich the business-
specific terminologies in the ontology, and enhance the recall
of natural language query interpretation.

D. DSL Translator

In this section we start with an OQL query produced by
ATHENA and design an algorithm to map the specific OQL
query clauses (e.g., SELECT, WHERE, FROM, GROUPBY,
ORDERBY, HAVING, etc.) to the appropriate DSL constructs
with equivalent functionalities. Since OQL is a back-end
agnostic query language which only captures the natural
language query intent, we believe the algorithm we develop
for OQL-DSL translation is easily extendable to any other
source query language.

The algorithm first maps OQL.Aggregation clauses to the
corresponding aggregation functions supported in DSL. If
the aggregation is also associated with a HAVING clause,
the algorithm translates it into a bucket selector in the DSL
query. The GROUPBY and SELECT clauses are translated
into group by buckets using the DSL query construct Term.
In case of non-aggregation queries, the SELECT clause is
mapped to the source JSON array, which is a DSL construct
used to return the specific sub-fields from each document.
The ORDERBY clause is mapped to the sort function which
is a DSL query construct for sorting, to produce sorted JSON
using sortJSON as the argument. In case the ORDERBY
has an aggregation as its argument, the sortJSON is pushed
inside the aggregation. Finally, the algorithm puts all the
DSL query constructs created from the OQL clauses together
into a final DSL query (DSLQuery) and uses the mapping
file to map field names in the DSL query to its fully qualified
JSON path. the The final DSL query corresponding to the
OQL query presented in Section II-B is shown in Figure 6.

E. System Implementation as Services

In this section, we focus on the implementation of our
prototype system. We implement each component in Figure
3 as a separate service. RESTful API is used for the
interaction between services. We provide details on each
service signature (RESTful API) and their expected behavior
in the end-to-end pipeline. Below, we list the services in
sequence of how they should be used.

Step 1:GET /deployment/set ES endpoint. This service
is used to set the details about the Elasticsearch (ES) store
back end where the event data is stored. This service
has the following parameters: (a) ES url, (b) ES index
name, (c) Elasticsearch user credentials, and (d) an assigned
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Algorithm 2: OQL-DSL Translation
Input: OQLQuery oql, Ontology O, Map[Concept,keyPath] mapping
Output: JSONObject DSLQuery

1 JSONObject
DSLQuery,queryJSON,aggClauseJSON,GroupByTermJSONs,sortJSON
← {}

2 JSONArray sourceJSONArray ← {},
3 foreach AggregationClause agg ∈ oql.getAggregations() do
4 String dslagg f unc = getDSLAggregationFucntion(agg.getAggType)
5 aggClauseJSON.add(createDSLAggrJSON(dslagg f unc,agg.getProperty))
6 if ∃ OQL.Having on agg then
7 JSONObject bucketSelectorJSON ←

createBucketSelectJSON(dslagg f unc,
8 comparison.op,comparison.value)
9 aggClauseJSON.put(“bucket selector”,bucketSelectorJSON)

10 if ∃ OQL.OrderBy OB with agg then
11 sortJSON ←

createSORT JSON(dslagg f unc,OB.getTopCount())
12 aggClauseJSON.put(“bucket sort”,sortJSON)

13 foreach WhereClause comparison ∈ OQL.Where do
14 if comparison is Non-numeric filter then
15 queryClauseJSONs.add(createT ERMJSON(comparison.property,
16 comparison.op,comparison.value))

17 if comparison is Numeric filter then
18 queryClauseJSONs.add(createRangeJSON(comparison.property,
19 comparison.op,comparison.value))

20 queryJSON.put(“must”,queryClauseJSONs)
21 foreach OQLClause selGB ∈ OQL.GroupBy ∪ OQL.Select do
22 if OQL has Aggregation then
23 GroupByTermJSONs.add(selGB.getProperty())

24 sourceJSONArray.add(selGB.getProperty)

25 if GroupByTermJSONs not Empty then
26 GroupByTermJSONs.put(“aggs′′,aggClauseJSON)
27 aggClauseJSON ← GroupByTermJSONs

28 foreach OrderByClause OB ∈ OQL.OrderBy do
29 sortJSON ←

createSORT JSON(OB.getProperty(),OB.getTopCount())

30 DSLQuery.put(“query′′,queryJSON)
31 DSLQuery.put(“aggs′′,aggClauseJSON)
32 DSLQuery.put(“ source′′,sourceJSON)
33 DSLQuery.put(“ sort ′′,sortJSON)
34 DSLQuery← mapJSONPaths(DSLQuery,mapping)
35 Return DSLQuery

Figure 6 A generated DSL example

OntologyID. The assigned OntologyID is used as a key for
future reference.

Step 2: POST /deployment/upload artifact. This service
is used to provide the domain artifact in JSON which
combines the information from .bom/.voc files. This service
is optional. Namely, if the end user has no specific business
vocabulary glossary or equivalent JSON for the domain, this
service can be skipped.

Step 3: GET /deployment/generate config. This service
is called after an end user has already provided the cre-
dential to Elasticsearch (Step 1) and uploaded the artifact in
JSON (Step 2). The service processes the above information
and execute the following sequentially: (a) generates an
ontology; (b) generates synonyms and configurations for the
derived ontology for query interpretation; (c) generates a
mapping between the ontology and the schema of JSON
data stored in Elasticsearch for query translation; (d) starts
the ontology service at a designated port ONT PORT; (e)
uploads the ontology generated from (a), along with config-
urations from (b) to the ontology service started in (d).

Step 4: GET /deployment/start components. Once the
domain-specific setup is finished in terms of deriving the
ontology for NLQ interpretation and generating the mapping
between the ontology and the schema of JSON data needed
for query translation, this service starts each component in
the following sequence: (a) generates the configuration file
with Elasticsearch access credentials3 and other details as
needed by the query translation; (b) starts the query transla-
tion service at a specific port EX PORT; (c) configures the
query translation service using the configuration generated
in (a); (d) starts the NLQ interpretation service at a specific
port INT PORT.

Note that query translation service is pre-configured to
use the ontology service running in ONT PORT (as started
in Step 3(d)). Similarly, the ATHENA interpretation service
is pre-configured to use the ontology service running in
ONT PORT and the ATHENA query translation service
running in EX PORT (as started in Step 4(b)). After Step 4,
the ATHENA entry point is running at port INT PORT and
can be used for natural language querying by end users.

IV. EXPERIMENTS

In this section, we present a comprehensive evaluation
of our proposed system through experiments on various
benchmarks and also an elaborate usability study.

A. Data Sets
We evaluate our prototype system on event logs from

2 publicly available and 3 internal processes which are
practically in use inside our organization.

BPI Challenge 2017 [6]: We used the data released as
part of BPI 2017 Challenge. It contains events pertaining to
loan applications and offers created for these applications.
The data set has three different types of events, of which we
choose application and offer events. Since the structure of
event logs are different for application and offer events, we

3Note that the Elasticsearch credentials are needed for executing the DSL
queries translated from OQL queries.
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store the event logs for each of them into separate indices
in Elasticsearch. Hence, we consider them as two separate
domains in our experiments.

Statechart [7]: It has software event logs obtained
through running a process mining program over a data
dump. The event log contains method-call level events
describing a program run. The life-cycle information in this
log corresponds to methods call (start) and return (complete),
and captures a method-call hierarchy.

BPM process on case activities. We collected event data
from a BPM process deployed to track case activities. The
data set mainly includes different type of activities for loan
application processing cases. The process has various tasks
such as submit, evaluate, decide, etc. Also each task has a
duration and a status (e.g. waiting, complete etc).

BPM process on Travel Pre-Approval. We collected
event data from a BPM process deployed to automate
travel pre-approval process. It has information about travel
request applications and various activities including manager
approval, application revise, director approval etc. .

ODM service on loan validation. These event logs are
generated from ODM decision running on Loan Validation.
The decision service takes information about borrower and
loan request as input, and generates a report containing the
input information as well as a decision on the status (i.e.,
approved or rejected) of the loan.

The statistics of the above data sets with respect to the
derived ontologies is provided in Table I. BPI challenge
data had all event information logged at the JSON root level,
hence they are single concept domains.

Domain Concept Property Relation Query

BPI-Loan Application 1 11 - 44

BPI-Loan Offer 1 17 - 43

BPI-Statechart 2 26 1 43

BPM-Case Activity 2 16 1 56

BPM-Travel Pre-approval 3 57 2 46

ODM-Loan Validation 10 235 10 57

Table I: Data Set Statistics

B. Experimental Setup
Users and query benchmark. As we are the first one to

propose a natural language querying interface over process
automation data, we also propose benchmarks of natural
language queries which we curated by collecting queries
from real users. We collaborated with real users who vol-
unteered to experiment with our system by asking natural
language queries to it. The users were from different profiles
as mentioned below:
(1) Business Users: They are the end users of process
automation technology including BPM, ODM and other
workflow automation tools.
(2) Process Automation Developers: They are the developers
who build and customize the process automation tools for

specific domains and services.
(3) NLI Experts: They are experts in using Natural Language
Interfaces (NLI) but not specifically familiar with process
automation technology space.

A total of 4 business users, 5 developers and 3 NLI
experts took part in our experiments. The business users and
developers had prior experience in using process automation
applications and also event logs across various use cases.
For NLI experts, we briefed them on process automation
applications. All the users were granted access to all the
artifacts related to our experimental domains including the
actual BAI data, the textual summaries, as well as the
domain artifacts like the BPM process model or the .bom
and .voc files for ODM service. We had shown them some
example NLQs of different categories that our system can
handle. During the experiments, the users were encouraged
to test more natural language queries which they found
interesting or insightful business process management. We
collected these queries to create the benchmark against
which we have evaluated our system. 4.

Evaluation metrics. We use the following metrics to
evaluate the performance of our prototype system.
Accuracy: # NLQs with correct answers / # NLQs asked to
the system
Precision: # NLQs with correct answers / # NLQs answered
by the system
Recall: # NLQs with correct answers / # NLQs that should
have produced correct answers
F1 score: 2 × Precision × Recall / (Precision + Recall)

C. Results and Discussion

The result produced by our prototype system is considered
correct only if it produces the correct DSL query, and
consequently returns the data requested by the NLQ.

Domain Accuracy Precision Recall F1 Score

BPI-loan Offer 70.21% 93.5% 70.73% 0.80

BPI-Loan Application 80% 81% 75% 0.779

BPI-Statechart 78.26% 92.11% 83.33% 0.875

BPM-Case Activity 80.35% 93.02% 83.33% 0.879

Travel Pre-approval 86.95% 95.12% 90.69% 0.928

ODM-Loan Validation 84.21% 95.34% 85.41% 0.90

Table II: Effectiveness of Our NLI Prototype

Effectiveness. Table II provides the evaluation results for
the query benchmark covering different business processes.
In Table II, our prototype achieves the highest accuracy of
86.95% accuracy on the Travel Pre-approval data set. That is
also the business process which achieves the highest recall.
This can be attributed to having the ontology enhanced with
the business terminologies found in the BPM process model.
In fact all the internal domains such as BPM case activity or

4Derived ontologies and the benchmark of queries available here:
https://github.com/jdpsen/Benchmark for NLQOnBAI
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ODM Loan validation also attain higher recall and accuracy
owing to the availability of corresponding BPM process
models or ODM vocabulary (.voc) files. This in general
suggests that having process specific data helps in more
accurate natural language querying on the event data.

For the publicly used external processes such as BPI-
Loan offer, Loan application and statechart, they did not
have any process artifacts beyond the event logs. As seen
in Table II, our system still attains a decent accuracy in the
range of 70%-80%. The average precision across all queries
in our benchmark is quite high (91%) and with around 81%
average recall our system can still handle a wide variety
of queries expected against such business processes without
access to any process specific artifacts.

Discussion and Error Analysis: Table II records a high
precision throughout all the domains. This signifies, in most
of the cases the QA system is confident about the answer
it produces. This correlates with the fact that ATHENA is a
state-of-art NLIDB system and the proposed DSL translator
in this paper is designed to handle most of the common
query intents like filters, aggregations, grouping, ordering
etc. The marginal drop in precision is seen for queries where
user is asking about complex queries which involves nesting
like ”show me zipcodes with more amount of loans approved
than average ” or queries involving mathematical operations
like ” what is the percentage of loan applications are for
housing loans ”. We do not yet handle such queries and
just retrieve the relevant even logs as an answer, which is
counted as wrong during precision.

The absence of process specific artifacts is more seen
in the recall, where the system fails to answer some of
the queries due to the lack of event data understanding.
This is expected because these artifacts like .voc file for
ODM or the process model for BPM indeed enhances the
ontology and enables the QA system to understand a larger
scope of queries. For example to answer a query like ”
list those ICML travel applications which are past manager
approval activity” - the QA system needs to know what is the
next scheduled activity after manager approval and it gets
that information only when the process model is available
to create an ordered list of activities (as we discussed in
Sec III-C). This is reflected in Table II where the recall
values recorded for our internal test domains with access to
process specific artifacts is higher than the publicly available
benchmarks with no process specific artifacts. Even then
with the accuracy, precision and recall values observed on
these publicly available event logs validates that the QA
system can still perform reasonably well with ontology
derived only from event logs data.

Usability analysis. Along with the performance evalu-
ation of our NLI system, we also conduct a user study
to measure the impact and value of our proposed system
with real users. We follow an established metric measuring
the quality of user experiences [13] with a User Experience
Questionnaire (UEQ), consisting of six metrics: attractive-
ness, perspicuity, efficiency, dependability, stimulation and

novelty.
Usability study was performed using the same set of

users as described in Section IV-B Each participant is given
the definitions of these metrics as detailed in [13], and is
requested to fill out the UEQ based on their user experience
with our prototype system on a scale of [-3,+3].

Figure 7 Results of the UEQ. Range from -3 (horribly bad)
to 3 (extremely good)

Figure 75 shows the results of the user study. All the
metrics received a score more than 1.0, which indicates a
positive overall experience across all dimensions. The UEQ
result also points to some important takeaways that are listed
below.
•Novelty. Novelty receives the 2nd highest score after

perspicuity as 2.2. This implies that the application of an nat-
ural language interface over process automation event data
is really seen as a novel application. With the bootstrapping
framework in place, the ease of using the system also results
in a high score for perspicuity.
•Dependability and effectiveness. A dependability score
of 1.4 coupled with efficiency score of 1.6 means that
business users find the query results returned by our system
dependable. The high simulation score of 2.2, along with an
attractiveness score 1.8 further confirm the user’s interest and
its value in providing useful insights for business processes.

V. RELATED WORK

Process Automation. Process automation has driven the
digital transformation in enterprises, with the initial focus
on using BPM frameworks to streamline processes for
governance, conformance, and regulations [1]. Tools such
as PROM [14] are very much needed for discovery, con-
formance, and performance monitoring using trace replay
capabilities. In recent years, robotic process automation
(RPA) has emerged as the next wave of automation, focusing
on automating repetitive tasks with minimal changes to
legacy software [15]. RPAs have been applied to differ-
ent application domains including accounting[16], auditing
[17] and banking [18]. Most recently, there are attempts
to infuse business processes with AI to further automate
complex tasks, reduce cost, and provide better customer
experience [19]. The BPM literature is rich in machine
learning solutions to gain insights on clusters of process
traces [20], to predict outcomes [21], and to recommend
decisions [22]. Deep learning models, including those from

5Presented in the same format as [13], where the length of bar stands
for the range of user scores and the printed score is the average of user
scores.
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the NLP domain, have also been applied [23]. However, the
capability of accessing and querying the process automation
data has been largely ignored. None of the above systems
are equipped with a natural language interface for business
users.

Natural Language Interface Systems. Natural language
interfaces to databases (NLIDBs) are meant to support NLQs
over structured data stored in relational databases. At the
core of a NLIDB system lies its ability to understand/inter-
pret a user query expressed in natural language. Typically, an
NLIDB system follows either an entity-based approach [4],
[5], recognizing the different entities involved in a query
using either a database schema or an ontology, or a machine
learning-based approach [24], [25], classifying a user query
into one of the possible query templates. Machine learning-
based approaches often suffer from lack of domain-specific
training data to learn complex query classes, and join paths
among multiple tables. Seq2SQL [24] can only handle single
table select and project queries without joins. Although the
rule-based systems such as ATHENA [5] have been shown
to achieve better results than the machine learning-based
approaches, none of these systems are specifically designed
for querying process automation data.

VI. SUMMARY AND FUTURE WORK

In this paper, we introduce a bootstrapping pipeline which
can instantiate a natural language querying interface over
process automation event logs in Elasticsearch. We proposed
novel algorithms for utilizing process specific artifacts and
event logs to derive an ontology for querying event logs.
Also we propose a novel translation algorithm to take a back-
end agnostic OQL query represented in terms of ontology
and translate it to an executable DSL query over Elas-
ticsearch.We conduct experiments on six different process
automation sources of event data. Experimental results show
that our system produces an average accuracy of 80% with
high precision ( 91%) and good recall ( 81%). The results
from the user study reveals the system is perceived as a
novel, dependable and efficient system that can handle the
long tail of queries that business users may be interested
in. In our future work, as we mentioned in IV, we hope
to support complex queries which require to combine the
answers from different domains. In addition, how to utilize
the process model artifact and answer queries requiring the
sequence information of events is another research interest.
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