

TRM **Research**

GRETA: Graph-based Real-time **Event Trend Aggregation**

Supported by NSF grants IIS 1018443. IIS 1343620. IIS 1560229. CRI 1305258.

New

event e

Olga Poppe, Chuan Lei, Elke A. Rundensteiner, and David Maier

Event Trends in Streaming Applications

Goal: Reliable actionable insights about the stream

Solution: Each event is considered in the context of other events in the stream

Single event = Single stock value may be an outlier

Event sequence = Stock trend of *fixed* length may be a local fluctuation **Event trend** = Stock trend of arbitrary length provides reliable insights

Health Care

Financial Fraud

Irregular heat rate

> Circular check kite

Traffic Control

Aggressive drivina

Existina trends New trends

Challenges

Cluster Monitoring

Unbalanced load distribution

- Exponential number of trends
- Arbitrary length of a trend
- · Complex event inter-dependencies in a trend
- Exponential time complexity

Existing Two-Step Approaches

Problem Statement: Real-time response despite exponential costs

Graph-Based Event Trend Aggregation

Nested Kleene Pattern P = (SEQ(A+,B)) +

Graph Template

Template captures instructions for runtime graph construction States are event types

Transitions are event operators

GRETA Graph

Graph compactly captures all trends Nodes are matched events

For example, (b2:1) is an event of type B with time stamp 2 and intermediate count 1 (number of trends that end at b2)

Edges connect adjacent events in a trend

Aggregates are incrementally propagated along the edges Quadratic time & linear space complexity

Final count: 43

Experiments

GRETA is a win-win solution that achieves 104 speed-up and 108 memory reduction compared to existing approaches

Conclusions

We are the first to compute aggregation of Kleene closure matches over event streams with optimal time complexity

- 1. GRETA graph compactly encodes all event trends matched by expressive Kleene gueries
- 2. Graph-based event trend aggregation with quadratic time complexity