
The VLDB Journal
https://doi.org/10.1007/s00778-022-00756-y

REGULAR PAPER

HERMES: data placement and schema optimization for enterprise
knowledge bases

Chuan Lei1 · Abdul Quamar2 · Vasilis Efthymiou3 · Fatma Özcan4 · Rana Alotaibi5

Received: 19 January 2021 / Revised: 11 March 2022 / Accepted: 8 June 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Enterprises create domain-specific knowledge bases (KBs) by curating and integrating their business data from multiple
sources. To support a variety of query types over domain-specific KBs, we propose Hermes, an ontology-based system that
allows storing KB data in multiple backends, and querying them with different query languages. In this paper, we address
two important challenges in realizing such a system: data placement and schema optimization. First, we identify the best data
store for any query type and determine the subset of the KB that needs to be stored in this data store, while minimizing data
replication. Second, we optimize how we organize the data for best query performance. To choose the best data stores, we
partition the data described by the domain ontology into multiple overlapping subsets based on the operations performed in
a given query workload, and place these subsets in appropriate data stores according to their capabilities. Then, we optimize
the schema on each data store to enable efficient querying. In particular, we focus on the property graph schema optimization,
which has been largely ignored in the literature. We propose two algorithms to generate an optimized schema from the
domain ontology. We demonstrate the effectiveness of our data placement and schema optimization algorithms with two real-
world KBs from the medical and financial domains. The results show that the proposed data placement algorithm generates
near-optimal data placement plans with minimal data replication overhead, and the schema optimization algorithms produce
high-quality schemas, achieving up to two orders of magnitude speed-up compared to alternative schema designs.

Keywords Knowledge base · Data placement · Schema optimization

Chuan Lei, Vasilis Efthymiou, Fatma Özcan, Rana Alotaibi: Work
done while at IBM Research.

B Chuan Lei
chuan.lei@instacart.com

Abdul Quamar
ahquamar@us.ibm.com

Vasilis Efthymiou
vefthym@ics.forth.gr

Fatma Özcan
fozcan@google.com

Rana Alotaibi
ralotaib@eng.ucsd.edu

1 Instacart, San Francisco, USA

2 IBM Research - Almaden, San Jose, USA

3 FORTH - Institute of Computer Science, Heraklion, Greece

4 Google, Mountain View, USA

5 University of California - San Diego, San Diego, USA

1 Introduction

A growing number of enterprises are creating domain-
specific knowledge bases (KBs) [24,27,58] by curating and
integrating their business data, including structured, unstruc-
tured and semi-structured data. One distinct characteristic
of these enterprise KBs, compared to cross-domain KBs
like DBpedia [39] and YAGO 4 [60], is their deep domain
specialization and understanding, which empowers many
applications in various domains, such as healthcare and
finance. These high-value KBs are used by various analysis
applications that require different querying capabilities, such
as informational search queries, precise structured queries,
complex graph queries, in order to extract insights from var-
ious business entities and relationships.

In this paper, we propose a novel system, Hermes, that
allows storing an enterprise KB in multiple backends using
different data models and query languages to support a rich
variety of query types over the KB. We argue that storing a
KB in a polystore system enables a variety of queries and

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-022-00756-y&domain=pdf
http://orcid.org/0000-0001-6265-9554

C. Lei et al.

applications that result in better business decisions. Follow-
ing the standard definition [15], a KB consists of meta-level
and instance-level data. To support deep domain specializa-
tion, we assume that the former is modeled in a domain
ontology, while the latter can be stored in various data stores.
The main benefit of using a domain ontology for data mod-
eling is that it offers a rich and entity-centric view of the
instance-level data stored in a KB, and the instance-level
data can be stored in any backend data store. Currently,Her-
mes includes a relational database, a document store, and a
property graph store. As a result, Hermes can answer SQL,
document search, and graph queries.

Many open challenges are associated with building a sys-
tem such as Hermes, ranging from query optimization, load
balancing, data placement, data transformation and inte-
gration, to schema optimization [52,56]. In this paper, we
address two of these challenges: data placement and schema
optimization (for property graphs in particular).

Data Placement. Deciding how to model the data and
which data store to use requires a deep understanding of the
data, the expected workload, as well as the query processing
capabilities of the different data stores. Structured data is best
suited to be stored in relational databases and queried through
SQL; text data ismostly indexed and retrieved through search
indexes, like Elasticsearch [9] and Solr [8]; graph data is
better analyzed using graph query languages (e.g., Gremlin
[3] and Cypher [30]) in graph databases, like JanusGraph
[4] and Neo4j [5]. There are two extreme solutions. On one
end of the spectrum, one can model the data using a single
data model, like the relational or graph model, and store the
entire KB in the corresponding data store. However, one size
does not fit all [56,57]. On the other end of the spectrum,
one could model the entire KB data in multiple data mod-
els, and store the whole KB in multiple backends to support
various query types. This would result in tremendous data
replication. We argue that there exists an optimal solution
between these twoextremes,whereweplace different subsets
of the KB in different data stores to support a rich variety of
queries.

SchemaOptimization.There have beenmany techniques
proposed for optimizing data schema over relational and
NoSQL stores [12,36,46], as different physical data organi-
zation results in varying performance. However, the problem
of property graph schema optimization has been largely
ignored, which is also critical to graph query performance.
Edge traversal is one of the dominant factors affecting graph
query performance, and having an optimized schema can
greatly improve query performance. The rich semantic rela-
tionships in an ontology provide a variety of opportunities to
connect or combine nodes together to reduce graph traver-
sals. To generate an optimized graph schema, we need to
identify and exploit these opportunities in the ontology, and
design different techniques to utilize them accordingly.

OurProposedApproach. In this paper,weproposeHer-
mes, an ontology-driven polystore system for rich querying
of enterprise KBs. We assume that Hermes has the ability
to store KB data in any data store that provides the needed
capability for the query types in the workload.With this flex-
ibility, Hermes provides an off-line capability-based data
placement to decide where to store KB data, as well as an
ontology-driven schema optimization to decide how to store
KB data conforming to a given ontology. Choosing the data
store based on its querying capabilities and supported data
model is consistent with the polystore approaches like Big-
DAWG [29] and more recent work in [1].

Hermes first aims to minimize the number of data
stores involved in any given query, hence minimizing the
cost of data movement and transformation across different
stores incurred during a query execution. It utilizes off-line
capability-based data placement algorithms for a given query
workload, choosing the most appropriate data store based on
its capabilities, and minimizing data movement costs. Sub-
sequently, Hermes stores each subset of the KB data in an
appropriate data store based on the generated data placement
plan.

Then, Hermes optimizes the schema of the data on each
data store to enable efficient querying. Given that there
exist many techniques for relational schema optimization
[12,36,46], in this paper, we focus on the property graph
schema optimization to improve graph query performance.
We first propose a set of rules that are designed to optimize
the graph query performance with respect to different types
of relationships in the ontology. We then introduce property
graph schema optimization algorithms that leverage these
rules to produce an optimized schema, taking into account
space constraints, if any, and additional information such as
data distribution and query workload.

Contributions. The contributions of this paper can be
summarized as follows.

– Wepropose anovel polystore system,Hermes, to support
a rich variety of query types over enterprise KBs. We
use domain ontologies to describe the data at a semantic
level. Currently, Hermes includes a relational database,
a document store, and a property graph store.

– We introduce an ontology-driven approach to tackle two
critical challenges, data placement and schema opti-
mization, to support a rich set of query types over
domain-specific KBs.

– We propose capability-based data placement algorithms
that use a given workload against the domain ontology
to decide how to store the data, for each concept of the
ontology, with minimum data replication while minimiz-
ing data movement.

– For graph schema optimization, we design a set of rules
that reduce the edge traversals by exploiting semantic

123

HERMES: data placement and schema optimization...

relationships in the ontology, resulting in better graph
query performance. We propose concept- and relation-
centric algorithms that harness these rules to generate
an optimized property graph schema from an ontology,
under space constraints.

– Our experimental study shows that the proposed data
placement algorithm generates near-optimal data place-
ment plans with minimal data replication overhead, and
the schema optimization algorithms effectively produce
high-quality schemas for two real-world KBs from med-
ical and financial domains. For query workloads over
these two KBs, the Hermes system achieves up to 2
orders of magnitude speed-up compared to alternative
schema designs.

The rest of the paper is organized as follows. Section 2
provides an overview of Hermes system and core concepts.
Section 3 describes our data placement method and Sect. 4
explains the algorithms to produce optimized property graph
schema. In Sect. 5, we provide our experimental results.
Finally, we review related work in Sect. 6, and conclude in
Sect. 7.

2 HERMES System

Figure 1 shows the overview of the Hermes system. The
KB construction component is responsible for data enrich-
ment/curation process, which consumes the heterogeneous
data sources for information extraction, entity resolution, and
data integration [16]. The data placement component decides
where to place the data depending on the capability of data
stores and the expected workload. The schema optimization
component ensures the data is stored on each data store in
an efficient way for the expected workload. Finally, the data
loading component transforms the heterogeneous data based
on the optimized schema and places the data in appropriate
data stores according to the data placement plan.

Fig. 1 Hermes system

The primary design goal of Hermes is to support rich
queries that access data from diverse sources and under het-
erogeneous data models. For this purpose, Hermes uses
a polystore architecture, with the ontology of the KB as
the global schema. Currently, Hermes supports a relational
database, a document store, and a property graph store. The
main reason for choosing a property graph store (e.g., Neo4j
or JanusGraph) over other graph stores (e.g., an RDF store)
is the following. RDF represents a graph as a set of triples, in
which even literals are represented as vertices. Those artifi-
cial vertices make it hard to naturally express graph queries
in SPARQL. In contrast, property graph stores offer much
more intuitive query languages such as Cypher and Gremlin,
which require considerably less expertise to use compared to
SPARQL. This is also the main reason why property graph
stores have gained much popularity in recent years.

At runtime, users can query the KB using Ontology Query
Language (OQL) (Sect. 2.2) against the domain ontology
without knowing the complex data model and storage of the
KB. Given an OQL query, the OQL compiler produces a
logical representation in the form of a Query Graph Model
(QGM) [49], which is essentially a DAG. The QGM captures
the data flow and dependencies in a query using operator
boxes, such as SELECT, GROUP BY, SETOP. Using QGM
in Hermes allows us to orchestrate the data flow between
different data stores during query execution, deferring the
optimization of sub-queries to the data stores.

To support query routing to appropriate data stores, the
query orchestrator takes the QGM representation of the
input query, the data-to-store mappings generated by the data
placementmodule, and the capability descriptions (Sect. 3.1)
of each data store to produce a plan that routes the query to
a single data store that has the relevant data and the capa-
bility to satisfy all the operations required by the query. In
the event that the query cannot be answered by a single data
store, the query orchestrator routes the query to a minimum
number of data stores that can satisfy the data and operations
required by the query. In Hermes, we choose to use a rela-
tional DBMS as the mediator that orchestrates the execution
of the query, using UDFs that access the other stores [52].
For example, if a query involves operations from both a rela-
tional database and a document store, the relational database
can invoke the search sub-query via a UDF-based mecha-
nism [52], and integrate it into the rest of the query plan.
Similarly, the relational engine can also act purely as a medi-
ator to combine intermediate results from other data stores,
if a query involves operations and data relevant to a search
and graph store.We created amicro-benchmark (Sect. 5.3) to
ascertain the efficacy of our query routingmechanismwith an
optimized query execution plan that leverages the capability-
based data placement plan produced by Hermes.

In Sects. 3 and 4, we introduce the design of data place-
ment and schemaoptimization (twoyellowboxes highlighted

123

C. Lei et al.

in Fig. 1) in more details. Note that we tackle these two
problems independently since each of them by itself is NP-
Hard. A holistic solution to collectively solve these two
problems together, where a trade-off between data replica-
tion and query performance can be considered during the
optimization, is left for future work. Next, we describe the
domain ontology and the OQL language, both of which play
a critical role in Hermes.

2.1 Domain ontology

A domain ontology describes a particular domain and offers
a structured view of the data. Specifically, it provides a
rich and expressive data model combined with a powerful
object-oriented paradigm that captures a variety of real-world
relationships between entities such as inheritance, union,
functionality, etc.

Definition 1 (Domain Ontology (O)) A domain ontology O
(C , R, P) contains a set of concepts C = {cn|1 ≤ n ≤ N },
a set of data properties P = {pm |1 ≤ m ≤ M}, and a set of
relationships between the concepts R = {rk |1 ≤ k ≤ K }.

A domain ontology is typically described in OWL [6],
wherein a concept is defined as a class, a property associated
with a concept is defined as aDataProperty and a relationship
between a pair of concepts is defined as an ObjectProp-
erty1. Each DataProperty pi ∈ Pn represents a characteristic
of a concept cn ∈ C , and Pn ⊆ P represents the set of
DataProperties associated with the concept cn . Each Object-
Property rk = (cs, cd , t) is associated with a source concept
cs ∈ C , also referred to as the domain of the ObjectProp-
erty, a destination concept cd ∈ C , also referred to as the
range of the ObjectProperty, and a type t . Relation types t
include functional (i.e., 1:1, 1:M), inheritance (a.k.a isA) and
union/membership relations2. Next, we give two ontologies
in medical and finance domains that describe the concepts
and relationships in each of these domains.

Hermes uses domain ontologies to drive the curation and
creation of the KB from heterogeneous data sources. The KB
constructed based on the ontology can leverage its standard
vocabularies/terminologies and semantically rich relation-
ships,making it closer to real-world downstreamapplications
(e.g., search and question answering). Inmany cases, domain
ontologies are available or provided in a specificdomain (e.g.,
FIBO ontology in finance, SNOMED in medicine, FoodOn
in the food domain), describing the entities and their rela-
tionships of at a semantic level, irrespective of where and

1 The terms ObjectProperty and Relationship are used interchangeably
in this paper.
2 Even if inheritance and union are not ObjectProperties, we simplify
the notation for presentation purposes.

Fig. 2 Ontology examples

how the data is stored. In case where an ontology is not pro-
vided, users can either manually create one based on their
domain knowledge or use bootstrapping techniques [32,40]
to derive one from the data sources. A mapping captures the
correspondence between the logical schema represented by
the ontology and the physical schema of the underlying data
stores.

2.2 Ontology query language

Hermes supports OntologyQuery Language (OQL) [40,53],
a query language expressed against the domain ontology
as an abstraction to query the data without knowing how
data is stored and indexed in multiple data stores. OQL
supports all data types that are supported by OWL [6] as
data property types, such as integer, boolean, string, etc.
OQL can express sophisticated query operations that include
aggregations, unions, and nested sub-queries among others.
Additionally,OQLcanexpress searchoperations such as full-
text and fielded search over concept properties, as well query
operations over indexed JSON documents, graph nodes and
edges represented as a set of concepts and relations in the
ontology. The constructs in OQL are inspired by SQL and
look very much like SQL, but they represent operations over
domain concepts and relations.

Figure 3 shows three OQL query examples against the
financial ontology of Fig. 2b. For further details, we refer the
reader to [53].

123

HERMES: data placement and schema optimization...

Fig. 3 OQL query examples

3 Data placement

As motivated in Sect. 1, enterprise applications may need to
support a wide variety of query types, depending on their
query workload. To support these different query types and
achieve the best performance,Hermes stores and indexes the
KB data across multiple data stores that provide the required
capabilities.

A naïve solution to avoid data movement is to replicate
the entire data across all data stores. However, this solution
is an overkill and can lead to huge replication and storage
space overheads. Moreover, not all stores provide all the
necessary capabilities needed by the queries, so even full
replication cannot eliminate data movement completely. For
example, a query may require access to a document store
for its search capability and a relational database for its join
capability. The intermediate search results need to be moved
from the document store to the relational database to gener-
ate the final results for this query. To minimize storage costs
and unnecessary data movement and transformation, we pro-
pose capability-based data placement algorithms that assign
data to data stores while taking into consideration both the
expectedworkload and the capabilities of the underlying data
stores in terms of the operations that they can perform. Next,
we provide a formal definition of the data placement prob-
lem and describe mechanisms of expressing the capabilities
of the data stores and query operations in the workload.

Definition 2 (Problem Definition - Data Placement) The
problem of data placement is to assign subsets of a KB
data to different data stores based on a given query work-
load and the query processing capabilities of the stores,
whileminimizing the amount of data replication such that the

number of stores involved for any query in the workload is
minimized3.

3.1 Data store capability and query operation
descriptions

We propose a declarative representation for the data store
capabilities and query operation descriptions by using a
set of Representational constraints and Datalog rules [11],
respectively. A representational constraint is expressed using
a fragment of the first-order logic, which is in the form
of ∀x1, . . . xn φ(x1, . . . xn) → ∃z1, . . . , zk ψ(y1, . . . , ym),
where {z1, . . . , zk} = {y1, . . . , ym}{x1, . . . , xn}. A Datalog
rule is a first-order logic expression without negations and
disjunctions that has the following form: RL(X) ← N1(X1),
..., Nn(Xn), where RL , N1, ..., Nn are predicate/relation
names, X1, ..., Xn are tuples of constants and variables, and
Nn(Xn) is an atom. The body of a Datalog rule is defined
as B={N1(X1), ..., Nn(Xn)}, while the head is defined as
RL(X). The variables that appear in the head of the query
are called distinguished variables. Each variable in X must
occur in at least one of X1, . . . , Xn . The rule is called boolean
when it has an empty head.

3.1.1 Data store capability description

A key element in a knowledge base architecture is the
primitives that are used to describe the capabilities of the
underlying data stores. Several approaches for describing
capabilities in heterogeneous databases have been proposed
in the literature [22,42], which primarily focus on expressing
the capabilities of a data store as views. They enumerate all
possible queries (view definitions) that can be handled/an-
swered by the data store. This approach is not scalable as
the number of view definitions can be very large, potentially
leading to query rewriting using infinite number of views.

Therefore, we propose to describe the capabilities of the
data stores in terms of the operations that they support
(e.g., join, group by, aggregation, fuzzy-text matching, path
expressions, search, graph operations/primitives, etc.) rather
than enumerating all possible queries that can be answered by
the data stores. Additionally, for a finer grained description
of each supported operation, we also provide a mechanism
to express any associated limitations. For example, a MAX
aggregation function might only be supported over numeric
types.

3 We make a distinction between stored data that is initially placed
in the data stores and intermediate data that is generated during query
execution.

123

C. Lei et al.

Table 1 Notation

Notations Definitions

L Limitation id

D Data type (e.g., numeric, text, graph, etc.)

F Function type (e.g., search, graph, etc.)

OP Operation type (e.g., JOIN, BFS, etc.)

S Data store

CP Capability name

RLdi
S j

Description of representational constraint

of a data store Si in terms of its capability

and limitation

H Hypergraph of a workload

V Set of concepts associated with a query q

E Set of hyperedges each representing

a summarized query

We define the following general form of a representational
constraint RLd

S to describe the capabilities of a data store S:

RLd
S : ∃S Store(S,CP, L) ← Capability(CP) ∧

Limitation(L, D, F,OP) ∀CP ∀L ∀D ∀F ∀OP,
(1)

where Store, Capability and Limitation are expressed as rela-
tions in a Datalog rule.

More specifically, each Capability associated with a data
store is defined in terms of an operation OP ∈ {JOIN, AGG,
...} that the store can perform on a particular data item of a
particular data type. Each capability is associated with a Lim-
itation Lid that describes the constraints associated with the
operation in terms of (1) the data type D ∈ {NUMERIC,
TEXT, ...} that the operation can consume, (2) the func-
tion type F that the operation is associated with (e.g., AGG
∈ {MIN, MAX, AVG, COUNT}), and (3) any specific opera-
tion type OP it is associated with (e.g., JOIN ∈ {INNER,
OUTER, LEFT OUTER, ...}). Table 1 summarizes the nota-
tion used in this section.

Example 1 The description d1 shows the capability of a rela-
tional store Sr in terms of a JOIN operation. The JOIN
operation is further described by the limitation Lid that speci-
fies the supported data type NUM (i.e., a numeric column) and
the supported operation type INR (i.e., inner join).

RLd1
Sr

: Store(Sr ,JOIN, Lid) ← Capability(JOIN),

Limitation(Lid ,NUM, 0,INR)

Example 2 The description d2 shows the capability of a
graph store Sg in terms of a graph operation GRAPHOP. The
GRAPHOP operation is described by the limitation Lid that

Table 2 Sample operations descriptions

Operation Descriptions

1 OPd
1 () ←Capability(AGG), Limitation(Li , NUM, SUM, 0)

2 OPd
2 () ←Capability(EQ), Limitation(Li , STRING, 0, 0)

3 OPd
3 () ←Capability(JOIN), Limitation(Li , INT, 0, INR)

4 OPd
4 () ←Capability(FM), Limitation(Li , STRING, 0, 0)

5 OPd
5 () ←Capability(EQ), Limitation(Li , CTYPE, 0, 0)

6 OPd
7 () ←Capability(SRC), Limitation(Li , TEXT, FS, 0)

specifies the supported data typeGRAPH, the supported graph
function F associated with the operation (i.e., BFS) and the
supported type of BFS operation (i.e., single-source BFS).

RLd2
Sg

: Store(Sg,GRAPHOP, Lid) ← Capability(GRAPHOP),

Limitation(Lid ,GRAPH,BFS,SSBFS)

3.1.2 Query operation description

We express the operations required by a given query as a set
of booleanDatalog rules.Modeling the data store capabilities
as well as the operations required by a query as Datalog rules,
enables deductive reasoning to evaluate their compatibility
and hence, facilitates the process of identifying appropriate
stores for the required query operations. Each query opera-
tion is expressed as a rule that specifies the type of operation
along with the limitations on the type of operands if any.

Example 3 The description OPd
1 shows an inner join query

operation with a limitation that the join column can only be
integer (INT).

OPd
1() ←Capability(JOIN),Limitation(Lid ,INT, 0,INR),

where the head of the rule is empty.

Table 2 provides a list of operation descriptions repre-
sented as Datalog rules for operations such as aggregations
(AGG), joins (JOIN), fuzzy matching (FM), exact match
or equality predicate (EQ), graph operations (GRAPHOP),
search (SRC). Each operation is associated with limitations
in terms of the data types that it operates on such as numeric
(NUM), string (STRING), integer (INT) complex data types
(CTYPE), graph (GRAPH), etc.

3.2 Data placement orchestrator

We design a data placement orchestrator that reasons about
the data placement at the level of query operations over the

123

HERMES: data placement and schema optimization...

Fig. 4 Data placement orchestrator

domain ontology representing the schema of an enterprise
KB. The data placement orchestrator identifies potentially
overlapping subsets of the ontology based on the given work-
load against theKBand the capabilities of the underlying data
stores. The orchestrator then outputs a mapping between the
identified subsets and the target data stores where they best
fit.

Figure 4 shows the major sub-components and workflow
of our proposed data placement orchestrator design. The
workload is represented as a set of queries expressed against
the concepts in the domain ontology. As we are primarily
interested in identifying the concepts in the ontology subject
to the operations involved in a given workload, we introduce
a workload analyzer (Sect. 3.2.1) that creates a summarized
representation of the queryworkload. The summarized query
workload is then modeled as a hypergraph where a query is
represented by a hyperedge, and the nodes in each hyperedge
represent the ontology concepts spanned by the query.

The ontology-based data partitioner (Sect. 3.2.2) groups
the concepts and relations in the hypergraph into potentially
overlapping subsets based on the query operations. The data
corresponding to these subsets is then placed on individ-
ual data stores based on their supported operations. All data
placement decisions are made at the granularity of the iden-
tified ontology subsets, placing all the data of any ontology
concept in its entirety. In other words, we do not horizontally
partition concepts across different stores.

3.2.1 Workload analyzer & hypergraph-based workload
modeling

Workload Analyzer. The workload analyzer takes as input
the expected query workload (provided by users or learnt
from query logs), and for each query, it creates two sets.
The first is a set of domain ontology concepts, that the
query accesses. The second is a set of operations (e.g., join,
aggregation) that the query performs over those concepts. To
generate a summarized representation of the given queries,
theworkload analyzer groups the queries that access the same
set of concepts into a group and then creates a set that com-
bines each query’s associated operations in the group. The
workload analyzer generates an operational description for
each query operation in the combined set.

Table 3 Summarized representation of queries

Operation Descriptions Concepts

Q1 OPd
1 () ←Capability(AGG), PublicMetric

Limitation(Li ,NUM,SUM,0)

OPd
2 () ←Capability(EQ), PublicMetricData

Limitation(Li ,STRING,0,0)

OPd
3 () ←Capability(JOIN), PublicCompany

Limitation(Li , INT,0,INR)

Q2 OPd
2 () ←Capability(EQ), PublicCompany

Limitation(Li ,STRING,0,0)

OPd
3 () ←Capability(JOIN), Industry

Limitation(Li ,INT,0,INR)

OPd
4 () ←Capability(FM),

Limitation(Li ,STRING,0,0)

Q3 OPd
4 () ←Capability(FM), Company

Limitation(Li ,STRING,0,0)

OPd
3 () ←Capability(JOIN), InsiderHistory

Limitation(Li ,INT,0,INR) InsiderPerson

Example 4 In Fig. 3, we list three OQL queries (Q1–Q3)
issued against the concepts in the finance ontology (Fig. 2b).
Each query consists of multiple types of operations and not
all operations can achieve their best performance on a rela-
tional store, such as fuzzymatching. Therefore, we utilize the
description of query operations to capture the type of oper-
ation along with its limitations to generate the summarized
representation of the workload. This way, the representation
is not tied to any specific data stores.

Table 3 shows the corresponding summarized representa-
tion of the above queries. The table summarizes the operation
descriptions, as well as the concepts in the finance ontology
(Fig. 2b) that are subjected to these operations for a given
workload. The summarized workload expressed over the
domain ontology is modeled as a hypergraph, which allows
us to use graph analysis techniques to cluster or group con-
cepts together based on the operations performed on them.
Then, we make data placement decisions for data corre-
sponding to each clustered group of concepts, based on the
operational capabilities of the underlying data stores.

Hypergraph-basedWorkloadModeling. The workload
is modeled as a hypergraph H , which is defined as a triplet
H = (V , E,OPd). A hyperedge ei ∈ E represents a sum-
marized query and the set of nodes Vei ⊆ V spanned by
the hyperedge represent the set of concepts accessed by the
query. Each hyperedge ei is also associated with the set of
operation descriptions OPd

ei ⊆ OPd that are performed by
the query.

Example 5 Figure 5 shows a corresponding hypergraph of the
summarized representation in Table 3, wherein the hyper-

123

C. Lei et al.

Fig. 5 Concept-level hypergraph

edge e1 spans over three nodes (concepts) PublicMetric,
PublicMetricData, and PublicCompany. The edge e1 is also
associated with three operation descriptions OPd

1 , OP
d
2 , and

OPd
3 .

3.2.2 Ontology-based data partitioner

The ontology-based data partitioner follows a two-step
approach for data placement. First, it runs graph analysis
algorithms that we will describe shortly over the hypergraph
H representing the summarized workload, to group the con-
cepts in the domain ontologyO based on the similarity of the
operations that are performed on these concepts. Second, the
data corresponding to these identified subsets of the ontol-
ogy is then mapped to underlying data stores based on their
capabilities RLd

S , while minimizing the amount of replica-
tion required.

The resulting capability-based data placement minimizes
data movement and transformation for a given workload at
query processing time, and greatly enhances the efficiency
of query processing in Hermes. The final output of the data
partitioner is a concept-to-store mapping M that maps the
ontology concepts to the appropriate data stores. Next, we
describe our proposed graph analysis algorithms for deciding
data placement.

Note here, that our data placement approach does not
explicitly consider any load balancing across different data
stores in Hermes. We focus mainly on the capability of the
underlying data stores and place data based on the expected
workload against the knowledge base. In doing so,we assume
that each underlying data store has the capability to trans-
parently take care of system issues such as scalability, load
balancing, and handling workload skew.

Operation-based Clustering (OC)Algorithm. The OC
algorithm (Algorithm 1) groups concepts based on the oper-
ations that they are subject to. For each operation description
OPd

i ∈ OPd in the hypergraph H , the algorithm creates a
cluster CLOPd

i
.The algorithm then iterates over the set of

operation descriptions associated with each hyperedge ei ,
and for each operation description OPd

i , it assigns all the
concepts spanned by ei to the cluster CLOPd

i
.

Once the concepts have been clustered together, the par-
titioner assigns each concept cluster CLOPd

i
to a set of data

stores S, such that each Si ∈ S has a capability description
that matches the operation description OPd

i of the cluster.
Finally, the algorithm generates a mappingM that maps each
concept in each cluster CLOPd

i
to the set of data stores in S.

Algorithm 1 Operator-based clustering (OC) algorithm

Input: H = (V , E, OPd), RLd
S

Output: M
1: Initialize CL= φ

2: for each OPd
i ∈ OPd do

3: for each e j ∈ E do
4: if OPd

i ∈ OPd
e j then

5: CLOPd
i
.add(e j)

6: end if
7: end for
8: CL.add(CLOPd

i
)

9: end for
10: Initialize M = φ

11: for each CLOPd
i

∈ CL do

12: for each RLdi
Si

∈ RLd
S do

13: if OPd
i .getBody() == RLdi

Si
.getBody() then

14: for each concept c ∈ CLOPd
i
do

15: M .add(c, Si) // add 〈c, Si 〉 to a map M
16: end for
17: end if
18: end for
19: end for
20: return M

Example 6 Given a hypergraph H shown in Fig. 5, we have
three data stores S1, S2 and S3. The capability description
of S1 satisfies OPd

1 , OP
d
2 and OPd

3 operations’ descriptions
listed in Table 3, S2 supports OPd

2 and OP
d
4 , and S3 supports

only OPd
2 . Our operator-based clustering algorithm creates

four clusters: CLOPd
1
, CLOPd

2
, CLOPd

3
, and CLOPd

4
. It then

places all concepts that are spanned by hyperedge e1, namely,
PublicCompany, PublicMetric, and PublicMetricData into
CLOPd

1
, CLOPd

2
, and CLOPd

3
clusters. Concepts spanned by

hyperedge e2, i.e., PublicCompany and Industry are placed
into CLOPd

2
, CLOPd

3
and CLOPd

4
clusters. Finally, it places

the concepts Company, InsiderPerson, and InsiderHistorty
in clusters CLOPd

3
and CLOPd

4
clusters.

Once the concepts are clustered by operations, the data
placement algorithm maps each concept in the cluster to
the set of data stores that support the corresponding opera-
tions. The final concept-store mapping has PublicCompany,
PublicMetric, PublicMetricData concepts mapped to S1, S2
and S3. However, Industry, Company, InsiderPerson, and
InsiderHistorty concepts are only mapped to S1 and S2.

Although the operator-based clustering (OC) algorithm
described above minimizes data movement at query pro-

123

HERMES: data placement and schema optimization...

cessing time by placing data into stores supporting the
corresponding operations, it introduces some replication
overheads as the same concept cluster may be placed at mul-
tiple stores if their capabilitiesmatch the cluster’s operations.
To further minimize the replication overhead, we propose a
more refined Min-Cover (MC) algorithm.

Min-Cover (MC)Algorithm. The Min-Cover algorithm
improves the operator-based clustering algorithm by fur-
ther minimizing the amount of data replication, while still
minimizing the data movement at query processing time.
Algorithm 2 leverages the minimum set-cover algorithm to
find the minimum number of data stores to support the com-
plete set of operations required by each hyperedge in the
query workload hypergraph. In fact, it minimizes the span of
each hyperedge across the set of data stores that satisfy the
set of operations required by the hyperedge.

Algorithm 2 Min-Cover (MC) Algorithm

Input: H = (V , E, OPd), Cd
S

Output: M
1: Initialize Sei = φ

2: for ei ∈ E do
3: Initialize I = φ

4: while Uei �= 0 do

5: SOPd

i = argMaxei (Uei , RL
d
S)

6: I .add(Si)
7: Uei .remove(SOPd

i)
8: end while
9: for each Si ∈ I do
10: for each concept c ∈ Vei do
11: M .add(c, Si)
12: end for
13: end for
14: end for
15: return M

For each hyperedge ei in the hypergraph H , a universe
of the set of operation descriptions Uei = {OPd

i , ..., OPd
n },

where OPd
i is an operation description associated with the

hyperedge ei , a set of data stores S = {Si , ..., Sn}, where
each data store Si has a specific set of capability descriptions
RLd

Si
= {RLdi

Si
,, RLdn

Si
}, the algorithmfinds theminimum

number of data stores I ⊆ S that cover the universe Uei .
Each concept in the hyperedge ei is then mapped to a store
Si ∈ I . Once the algorithm iterates through all hyperedges,
it produces the final concept-to-store mapping M .

Example 7 Continuing with our example in Fig. 5, the Min-
Cover algorithm produces a concept-store mapping M ,
where PublicCompany, Industry, Company, InsiderPerson,
and InsiderHistory concepts are mapped to S1 and S2. Pub-
licMetricData and PublicMetric concepts are mapped to S1.
No concepts aremapped to S3, as S1 and S2 cover all required
operations for the hypergraph.

Discussion. The workload-aware data placement inHer-
mesmay become sub-optimal as the query workloads can be
uncertain or change overtime in real-world applications. This
is due to the fact that Hermes assumes a static workload and
produces its data placement plan based on the summarized
representation of this workload. However, the Min-Cover
algorithm works very well in practice and is robust to small
changes in the workload, such as selection columns, join,
and filter predicates, as these operations essentially require
the same capabilities from the underlying data stores and the
data placement remains optimal without any re-optimization.

In case of a significant workload shift, that subjects the
ontology concepts to a different set of operations, the data
placement would become sub-optimal and then, Hermes
would require to re-optimize the data placement plan accord-
ingly. Consequently, the data would need to be re-partitioned
among the data stores, which can be expensive. Incremental
re-partitioning mechanisms such as [50] can be leveraged for
reducing the cost of such data migration. Further investiga-
tion is left as future work.

4 Schema optimization

Given a data placement plan, the goal of Hermes’s schema
optimization is to optimize the data schema on each data store
for high-performance query and analysis. As mentioned in
Sect. 2, schema optimization in relational and NoSQL stores
has been extensively studied [12,36,46]. In this paper, we
adopt the correlation-aware approach [36] for the relational
store, and exploit NoSE [46] for our NoSQL store. In the
rest of this section, we focus on schema optimization for the
property graph store. We argue that the graph query perfor-
mance varies vastly for different property graphs with the
same data but corresponding to different schemas. We illus-
trate this using two examples from the medical domain.

Example 8 (Pattern Matching Query) Consider the ontol-
ogy in Fig. 6a, summary is a property of DrugInteraction
concept, which is connected to DrugFoodInteraction and
DrugLabInteraction concepts via inheritance (isA) relation-
ships. Figure 6b and c shows two alternative property graphs
conforming to two different schemas with several vertices
and edges. In Fig. 6b, the vertex di1 (i.e., an instance of
DrugInteraction) leads to both dfi1 and dli1. In Fig. 6c, drug1
directly connects to dfi1 and dli1 vertices. For any query that
requires edge traversals from drug1 to either dfi1 or dli1 or
both, the property graph 2 clearly requires less number of
edge traversals. A pattern matching query interested inDrug
and the associated risk of DrugFoodInteraction achieves 2
orders of magnitude performance gains on the optimized
property graph (23ms) compared to the property graph 1
(3245ms).

123

C. Lei et al.

Fig. 6 Motivating example

Example 9 (Aggregation Query) In Fig. 6a, Drug concept is
also connected to Indication concept via a treat (1:M) rela-
tionship. In this case, we observe that if we replicate certain
properties accessible via a 1:M relationship, edge traversals
can be avoided. Figure 6c shows that the vertex drug1 has an
additional property, which is a list of descriptions replicated
from the property desc of ind1 and ind2. An aggregation
query (COUNT) on the desc of Indication treated by Drug
runs 8 times faster on this optimized property graph (78ms)
than the property graph 1 (627ms). In this case, avoiding the
edge traversals is extremely beneficial, especially when the
number of edges between these two types of vertices is large.

These two examples show that edge traversal is one of
the dominant factors affecting graph query performance, and
having an optimized schema can greatly improve query per-
formance. Moreover, the rich semantic relationships in an
ontology provide a variety of opportunities to reduce graph
traversals. To generate an optimized graph schema, we need
to identify and exploit these opportunities in the ontology,
and design different techniques to utilize them accordingly.

Definition 3 (Property Graph (PG)) A property graph PG
(V , E) is a directed multi-graph with vertex set V and edge
set E , where each node v ∈ V and each edge e ∈ E has data
properties consisting of multiple attribute-value pairs.

A property graph schema PGS can be specified in a
data definition language such as Neo4j’s Cypher [30], Tiger-
Graph’sGSQL [26], etc. They all define notions of node types
and edge types, as well as property types that are associated
with a node type or with an edge type. We adopt Cypher due
to its popularity, but our proposed techniques are indepen-
dent of the aforementioned languages. Table 4 provides the
notations used in the property graph schema optimization.

Definition 4 (Problem Definition - Schema Optimization)
Given an ontology O providing a semantic abstraction of
the input data, the problem of property graph schema opti-
mization is to generate a property graph schema that produces
the best query performance for various graph queries (e.g.,
patternmatching, path finding, or aggregation queries). Opti-
mizing the property graph might entail data replication and

Table 4 Notation

Notations Definitions

O an ontology

ci ci ∈ C : a concept in an ontology

ri ri ∈ R: a relationship in an ontology

ci .Pi all data properties associated to ci
ci .inE all incoming relationships of ci
ci .out E all outgoing relationships of ci
ci .Ri ci .Ri = ci .inE ∪ ci .out E

ri .src the source concept of ri
ri .dst the destination concept of ri
ri .t ype the relationship type of ri
PGS a property graph schema

vsi vsi ∈ V S: a schema vertex

vsi .PSi all property schema of vsi

esi an edge schema defined in PGS
esi .t ype the edge type of ei
PG a property graph

hence increased memory footprint. In real knowledge graph
applications, especially in a multi-tenant setting, there is a
limit on the amount of memory that we can trade for query
performance. Hence, any practical solution needs incorpo-
rate a space constraintwhile producing an optimized property
graph schema.

Figure 7 provides an overview of our property graph
schema optimization approach. The property graph schema
optimizer takes as input an ontology and optionally a space
limit, data statistics, as well as workload summaries4. It uti-
lizes a set of rules designed for different types of relationships
to produce an optimized property graph schema. The raw
graphdata is then loaded into a graphdata store (e.g.,Neo4j or
JanusGraph) conforming to the optimized schema. At query
time, users can directly expresses graph queries against this
instantiated property graph corresponding to the optimized
schema.

4 Access frequencies of concepts, relationships, and data properties in
an ontology.

123

HERMES: data placement and schema optimization...

Fig. 7 Schema optimization overview

Fig. 8 Union relationship

4.1 Relationship rules

Graph queries often involve multi-hop traversal or vertex
attribute lookup/analytics on property graphs. As shown in
Fig. 6, edge traversals over a graph are vital to the overall
query performance. Hence, we focus on the rich seman-
tic relationships in an ontology and propose a set of novel
rules for different types of relationships. These rules mini-
mize edge traversals and consequently improve graph query
performance.

Union Rule. In an ontology, a union relationship (run =
(ci , c j)) contains a union concept (ci) and a member con-
cept (c j). Each instance of a union concept is an instance of
one of its member concepts, and each instance of a mem-
ber concept is also an instance of the union concept. For
example, BlackBoxWarning and ContraIndication are two
member concepts of a union concept Risk. A graph query
accessing an instance of Risk is equivalent to accessing the
instances of either BlackBoxWarning, or ContraIndication,
or both. A query starting from any vertices of either Black-
BoxWarning or ContraIndication concepts have to traverse
through some vertex of Risk in order to reach the vertices of
Drug. This leads to unnecessary edge traversal.

Algorithm 3 Union Rule (union)
Input: A union relationships run
1: vsi ← run .src // the union concept of run
2: vs j ← run .dst // the member concept of run
3: for each r ∈ vsi .ESi do
4: if ¬(r of type union) then
5: vs j .ESj ← vs j .ESj ∪ r
6: end if
7: end for
8: return vsi , vs j

Hence, we propose a union rule to alleviate this issue.
The union rule first creates a union node vsi (based on the
corresponding ci inO) and itsmember node vs j (based on the
corresponding c j in O) in the property graph schema. Then
the member node vs j is connected to the other nodes that
connect to the union node vsi in the property graph schema
(Algorithm 3). Figure 8a and b shows the property graph
schema and the corresponding property graph after applying
the union rule to the above example.

Inheritance Rule. An inheritance relationship (rih =
(ci , c j)) contains a parent concept (ci) and a child concept
(c j). Similar to the union rule, we design the inheritance
rule to optimize the schema to be more compact and precise
regarding the concepts associated with inheritance relation-
ships. Unlike a union concept, a parent concept in the
inheritance relationship may have instances that are not
present in any of its children concepts. This leads to the fol-
lowing possible scenarios.

1. Connect the child node vs j directly to the nodes that are
connected to its parent node vsi , and attach all data prop-
erties vsi .Pi of vsi to the child node vs j in the schema;

2. Connect the parent node directly to the nodes that are
connected to its child node, and attach all data properties
vs j .Pj of vs j to the parent node vsi in the schema;

3. Or connect the parent vsi and child vs j nodes with an
edge of type isA.

In the first two cases, edge traversals can be avoided in the
property graph conforming to the property graph schema.
Figure 2a shows that DrugFoodInteraction and DrugLabIn-
teraction are two children concepts of DrugInteraction.
Applying the inheritance rule to these concepts can lead to
two alternative optimized property graph schemas shown in
Fig. 9.

However, attaching the data properties (ci .Pi) from the
parent concept to the child concept incurs data replication
as ci .Pi is shared among all children concepts (Fig. 9b). If
the number of data properties shared by the children con-
cepts is large, the data replication can introduce significant
space overhead. On the other hand, when the data proper-
ties (c j .Pj) from the children concepts are replicated to their
parent concept (ci), ci may end up with a large number of
data properties (Fig. 9d). However, these data properties may
not exist in many instance vertices of ci . Consequently, the
instance vertices of ci may consume unnecessary space. To
remedy the above two issues, we propose to exploit the Jac-
card similarity [41] between ci .Pi and c j .Pj to decide the
best strategy for the inheritance relationship:

J S(ci .Pi , c j .Pj) = |ci .Pi ∩ c j .Pj | / |ci .Pi ∪ c j .Pj |. (2)

123

C. Lei et al.

Fig. 9 Inheritance relationship

As described inAlgorithm4, if J S(ci .Pi , c j .Pj) is greater
than a threshold θ1, it indicates that the child concept c j
shares a lot of data properties with its parent concept ci . In
this case, moving c j .Pj from the child concept to ci incurs
less space overhead compared to the other way. Similarly, if
J S(ci .Pi , c j .Pj) is less than a threshold θ2 (θ2 ≤ θ1), the child
concept c j has little in common with its parent ci . Therefore,
it is more cost effective to make the data properties of the
parent concept ci .Pi available at c j . In either case, the inher-
itance rule avoids edge traversals in the resulting property
graph. The Jaccard similarity is computed based on the orig-
inal ontology, as it represents the semantic similarity between
two concepts with an inheritance relationship.

Algorithm 4 Inheritance Rule (inheritance)
Input: An inheritance relationship rih
1: vsi ← rih .src // Parent concept
2: vs j ← rih .dst // Child concept
3: jsim ← J S(vsi .PSi , vs j .PSj) // Jaccard similarity of rih
4: if jsim > θ1 then
5: vsi .Pi ← vsi .PSi ∪ vs j .PSj

// ESih is the set of inheritance relationships
6: vsi .ESi ← (vsi .ESi ∪ vs j .ESj)\rih
7: else if jsim < θ2 then
8: vs j .PSj ← vs j .PSj ∪ vsi .PSi
9: vs j .ESj ← (vs j .ESj ∪ vsi .ESi)\rih
10: end if
11: return vsi , vs j

One-to-one Rule.A 1:1 relationship (r1:1 = (ci , c j)) indi-
cates that an instance of ci can only relate to one instance of
c j and vice versa (e.g., Indication and Condition in Fig. 2a).
Two concepts (ci and c j) of a 1:1 relationship can be repre-
sented as one combined node vsi j in the optimized schema
(Algorithm 5), which is similar to joining two tables in rela-
tional databases where one row in one table is linked with
only one row in another table and vice versa. If two tables

Fig. 10 1:1 relationship

are merged, a join can be saved when two tables are queried
together.

Algorithm 5 1:1 Rule (oneToOne)
Input: A 1:1 relationship r1:1
1: vsi ← r1:1.src
2: vs j ← r1:1.dst
3: vsi, j ← ∅
4: vsi, j .ESi, j ← (vsi .ESi ∪ vs j .ESj)\r1:1
5: vsi, j .PSi, j ← vsi .PSi ∪ vs j .PSj
6: return vsi, j

In Fig. 10a, IndicationCondition is the merged concept
with two data properties, name and note, attached. Hence, the
edge traversal from Drug to Condition in Fig. 2a is avoided
and the number of instance vertices (space consumption) is
reduced as well.

One-to-many Rule. A 1:M relationship (r1:M = (ci , c j))
indicates that an instance of ci can potentially refer to sev-
eral instances of c j). In other words, in a 1:M relationship,
an instance of ci allows zero, one, or many corresponding
instances of c j . However, an instance of c j cannot have more
than one instance of ci .

To better support the aggregation (e.g., COUNT, SUM,
AVG, etc.) and neighborhood (1-hop) lookup functions in
graph queries, we first create two nodes vsi and vs j cor-
responding to ci and c j in the optimized schema. Then
we propagate each data property vs j .Pj of vs j as a prop-
erty of type LIST to the other node vsi (Fig. 11a). The
aggregation and neighborhood lookup functions can directly
leverage these localized list properties instead of traversing
through the edges of the 1:M relationships. This is similar
to denormalization technique in relational databases where
data replication is added to one or more tables in order to
avoid costly joins. As depicted in Fig. 11b, Indication.desc
is a data property of drug2 consisting of a list of descriptions
(i.e., [Fever, Headache]) that saves the aggregation queries
edge traversals to the other instance vertices (e.g., ind1 and
ind2). The potential savings can be substantial when there
are many edges between instance vertices of two concepts
such as Drug and Indication.

However, the newly introduced property of type L I ST
introduces additional space overheads, which can be expen-
sive depending on the data distribution. Therefore, choosing

123

HERMES: data placement and schema optimization...

Fig. 11 1:M relationship

the appropriate set of data properties from each 1:M rela-
tionship to propagate is critical with respect to both query
performance and space consumption. Algorithm 6 corre-
sponds to the one-to-many rule.

Algorithm 6 1:M Rule (oneToMany)
Input: A 1:M relationship r1:M
1: vsi ← r1:M .src
2: vs j ← r1:M .dst
3: for each p ∈ vs j .PSj do
4: vsi .PSi .addAsList(p)
5: end for
6: return vsi , vs j

Many-to-many Rule. An M:N relationship (rM :N =
(ci , c j)) indicates that an instance of ci can have several
corresponding instances of c j , and vice versa. An M :N rela-
tionship is essentially equivalent to two 1:M relationships,
namely, r1:M = (ci , c j) and r1:M = (c j , ci). Therefore,
the many-to-many rule is identical to the one-to-many rule,
except that the property propagation is done for both direc-
tions.Namely, in the optimized schema, a data property of the
node vsi corresponding to ci inO is propagated as a property
of type LIST to the node vs j corresponding to c j in O, and
vice versa. Hence applying the many-to-many rule leads to
the same potential gains for queries with aggregate or neigh-
borhood (1-hop) lookup functions at the cost of introducing
additional space consumption.

In summary, all proposed rules reduce the number of edge
traversals which improve graph query performance. The one-
to-one rule simply combines nodes together to avoid edge
traversals while reducing the number of nodes in the graph.
Both union and inheritance rules introduce new edges to
bring nodes closer. Both one-to-many and many-to-many
rules replicate data properties between nodes to improve the
aggregation and 1-hop lookup functions in graph queries.
Hence, union, inheritance, one-to-many, and many-to-many
rules incur space overheads. In Sect. 4.2, we introduce our
property graph schemaoptimization, trading off performance
gain and space overhead.

4.2 Property graph schema optimization

To produce an optimized property graph schema, we need
to determine how to utilize the proposed rules described in
Sect. 4.1. A straightforward approach is to iteratively apply
these rules in order and generate the property graph schema.

Specifically, Algorithm 7 takes as input an ontology O
and first computes the Jaccard similarity scores for all inheri-
tance relationships (Lines 1-2). Then, it iteratively applies the
appropriate rule to each relationship in the ontology (Lines
3-16). At the end of each iteration, it checks if the ontology
converges (Line 17). Finally when no more rule applies, a
property graph schema is generated (Lines 18-19). In fact,
these rules can be applied in any order, and the generated
property graph schema is always the same.

Algorithm 7 Ontology to PGS without Space Limits
Input: Ontology O = (C, R, P)

Output: A property graph schema PGS
1: for each r ∈ R of type inheri tance do
2: r . js ← computeJS(r)
3: end for
4: PGS ← ∅
5: repeat
6: PGSprev ← PGS
7: for each r ∈ R do
8: switch r .t ype do
9: case 1:1
10: PGS ← PGS ∪ oneToOne(O , r)
11: case 1:M
12: PGS ← PGS ∪ oneToMany(O , r)
13: case M:N
14: PGS ← PGS ∪ manyToMany(O , r)
15: case union
16: PGS ← PGS ∪ union(O , r)
17: case inheritance
18: PGS ← PGS ∪ inheritance(O , r)
19: end for
20: until PGS = PGSprev
21: return PGS

Theorem 1 Applying the union, inheritance, 1:M and M:N
rules in any order produces a unique PGS, if there is no
space constraint.

Proof Let O = (C , R, P) be an ontology given as input to
Algorithm 7, and let Oout = (Cout , Rout , Pout) be the result-
ing ontology, which is used in Line 18 to produce the output
PGS. Proving Theorem 1 is equivalent to proving that apply-
ing the rules for any R′ ⊆ R in any order will yield the
same result Oout . The theorem trivially holds when |R′| = 0
(Oout = O), and when |R′| = 1 (only one rule can be
triggered).

Base case. |R′| = 2, i.e., for any two relationships, apply-
ing the rules in any order yields the same result. Since we

123

C. Lei et al.

Fig. 12 Union and inheritance rules independence

only have two relationships, only two rules will be triggered
if the relationships are of different types, or one rule will be
triggered twice if the two relationships are of the same type.

(i) Union and Inheritance. To prove that union and inher-
itance rules are order-independent, we examine all the cases
in which those two rules may be triggered in the same graph.
We assume that the Jaccard similarity between the two con-
cepts connected with an inheritance relationship is less than
θ2 (Algorithm 4), so the inheritance rule is triggered and the
properties of the parent concept are copied to the child con-
cept. It is straightforward to apply the following observations
to the case in which the Jaccard similarity is greater than θ1
as well. Figure 12 contains more than two relationships, but
only two relationships are sufficient to prove the case. The
additional relationships shown are for illustration purpose
only.

In the trivial case of Fig. 12a, the source and destination
concepts of the union and inheritance relationships are not
inter-connected. If we apply the union rule first, we will end
up with the left part of Fig. 12d, leaving the right part of
Fig. 12a unchanged, and if we apply the inheritance rule
first, we end up with the right part of Fig. 12d, leaving the
left part of Fig. 12a unchanged. In both cases, applying the
second rule generates the graph of Fig. 12d.

The case shown in Fig. 12b is more complex, where the
same concept (c1) corresponds to a union concept and a child
concept. Applying the union rule first, we remove c1 and con-
nect its member concepts c2 and c3 to c5 through inheritance
relationships. Then, the inheritance rule is triggered, remov-
ing c5, copying its properties to its new children c2 and c3,
and connecting them to c4, as shown in Fig. 12e. If we apply
inheritance first, instead of union, then we first remove c5,
copy its properties to c1 and connect c1 to c4. Then, applying
the union rule, we remove c1 and connect the member con-
cepts c2 and c3 to c4, again resulting in the graph of Fig. 12e.

In a similar way, we can show that union and inheritance
rules are order-independent in the case of Fig. 12c, in which
the same concept (c2) corresponds to a member concept and
a parent concept. If we apply the union rule first, we remove

Fig. 13 Inheritance and 1:M rules independence

c1 and connect the member concepts c2 and c3 to c4. Then,
applying the inheritance rule, we remove c2, copy its prop-
erties to c5, and connect c4 to c5, resulting in the graph of
Fig. 12f. If we apply the inheritance rule first, we remove
c2, copy its properties to c5, and connect c1 to c5 through
a union relationship. Finally, we apply the union rule and
remove c1, connecting c4 to c5 and c3, also resulting in the
graph of Fig. 12f.

(ii) Inheritance and 1:M. We follow a similar strategy to
prove that inheritance and 1:M rules are order-independent,
enumerating all possible cases in which those two rules may
be triggered in the same graph. Again, we assume that the
Jaccard similarity between the two concepts connected with
an inheritance relationship is less than θ2, so the inheritance
rule is triggered and the properties of the parent concept are
copied to the child concept.

We skip the trivial case in which the inheritance and 1:M
relationships are not related, and start with the case depicted
in Fig. 13a, where the parent concept c1 is also the source
concept of an 1:M relationship. If we apply inheritance first,
thenwe copy the properties of c1 to c2, remove c1 and connect
c2 to c3 through a 1:M relationship. Then, we apply the 1:M
rule and copy c3’s properties to c2, resulting in the graph of
Fig. 13e. If we apply the 1:M rule first, then we first copy the
properties of c3 to c1 and then we apply inheritance to copy
the properties of c1 (also including the properties of c3) to c2,
remove c1 and connect c2 to c3 through a 1:M relationship,
resulting again in the graph of Fig. 13e.

In the case of Fig. 13b, the parent concept (c1) is now also
the destinationof an1:M relationship. Ifwe apply inheritance
first, then we copy the properties of c1 to c2, remove c1 and
connect c3 to c2 through a 1:M relationship. Then, we apply
the 1:M rule and copy c2’s properties to c3, resulting in the
graph of Fig. 13f. If we apply the 1:M rule first, then we first
copy the properties of c1 to c3 and then we apply inheritance
to copy the properties of c1 to c2, remove c1 and connect c3
to c2 through a 1:M relationship. Finally, we apply 1:M rule

123

HERMES: data placement and schema optimization...

again and copy the properties of v2 to v3, again resulting in
the graph of Fig. 13f.

In Fig. 13c, c2 is a child and a source concept of a 1:M
relationship. In short, if we apply inheritance first, we remove
c1 and copy its properties to c2 and then we apply 1:M and
also copy the properties of c3 to c1, resulting in Fig. 13g. If
we apply 1:M first, we copy the properties of c3 to c2 and
then we apply inheritance to copy the properties of c1 to c2
and remove c1, again resulting in Fig. 13g.

Finally, in Fig. 13d, c2 is a child and a destination concept
of a 1:M relationship. Ifwe apply inheritancefirst,we remove
c1 and copy its properties to c2 and then we apply 1:M and
copy the properties of c2 (including the properties of c1) to c3,
resulting in the graph of Fig. 13h. If we apply 1:M first, we
copy the properties of c2 to c3 and then we apply inheritance
to copy the properties of c1 to c2 and remove c1. Again, we
need to trigger the 1:M rule once more to copy the properties
of c2, now also including the properties of c1, to c3 and get
the graph of Fig. 13h. For the remaining pairs of rules (i i i)
– (vi), we can follow the same strategy and prove that they
are order-independent for all possible cases.

Induction hypothesis. Applying the rules in any order
for any R′ ⊆ R, where |R′|=n, always results in the same
O ′. Then, applying the rules in any order for any R′′ ⊆ R,
such that |R′′| = n+1 and R′ ⊂ R′′, will always result in the
same O ′′, since there is only one additional relationship in
R′′ compared to R′, and only one possible rule corresponding
to this new relationship can be triggered. ��

While the naïve approach harnesses all potential optimiza-
tion opportunities aggressively, it incurs space overheads
from union, inheritance, 1:M, andM:N rules. In cases where
the number of such relationships is large in the ontology, this
canbe expensivewith respect to the space consumption, espe-
cially in a cluster setting, where many large-scale property
graphs co-exist. Hence our goal is to produce an optimized
property graph schema for a given space limit. The quality
and the space consumption of an optimized property graph
schema are measured based on the total benefit and cost (i.e.,
space consumed) by applying the rules (given by Eqs. 4-6 in
Sect. 4.2.2).

Definition 5 (Optimal Property Graph Schema) Let PGS be
the set of all property graph schemas, such that ∀PGS ′ ∈
PGS we have Cost(PGS ′) ≤ S, where S is a given
space budget. PGSopt ∈ PGS is an optimal property graph
schema if � PGS ′ ∈ PGS such that Benefit(PGS ′) >

Bene f i t(PGSopt).

Finding an optimal property graph schema is exponential
in the number of concepts and relationships in the ontology,
which is practically infeasible. Hence, we need to design
efficient heuristics to produce a near-optimal property graph
schema. To achieve this goal, we propose two property

graph schema optimization algorithms that leverage addi-
tional information such as data and workload characteristics.

Data characteristics contain the basic statistics about
each concept, data property, and relationship specified in the
given ontology. The statistics include the cardinality of data
instances of each concept and relationship, as well as the data
type of each data property. The data characteristics allowus to
identify and prioritize themore beneficial relationships when
applying union, inheritance, one-to-many andmany-to-many
rules, such that the space can be used more efficiently.

Access frequencies provide an abstraction of the work-
load in terms of how each concept, relationship, and data
property accessed by each query in the workload. We use

AF(ci
rk−→ c j .Pj) to indicate the frequency of queries (the

number of queries) that access a data property in c j .Pj from
the concept ci through the relationship rk . The high frequency
of a relationship indicates its relative importance among all
relationships in the given ontology. Hence it is imperative
to apply the above rules to these relationships with high fre-
quency.

In case of no prior knowledge about access frequency, we
assume that it follows a uniform distribution. Our approach
can also handle updates (i.e., insert, delete, and modify) to
the property graph if they do not incur any schema changes. If
the accumulated updates change the data distributions, then
we can apply the rules locally to the affected part of the
ontology. Note that data statistics changes can invalidate cer-
tain rule applied earlier, or can trigger new rules, especially
inheritance and union rules. We can make local adjustments
to accommodate these changes. Minimizing such transfor-
mation overheads is left as future work.

4.2.1 Concept-centric algorithm

As described in Sect. 2.1, an ontology describes a particular
domain and provides a concept-centric view over domain-
specific data. Intuitively, some concepts are more critical to
the domain, and have more relationships with the other con-
cepts [51]. We expect these key concepts to be queried more
frequently than others. This leads to our concept-centric algo-
rithm that exploits the structural information in an ontology
to identify key concepts and thus provides an estimation of
the expected workload over the ontology.

To determine these key concepts, we utilize centrality
analysis over the ontology to rank all concepts according
to their respective centrality score. The centrality analysis is
based on the commonly used PageRank algorithm [19] as
its underlying assumption, more important websites likely
to receive more links from other websites, is similar to our
intuition of key concepts. In this work, we utilized amodified
PageRank algorithm, called OntologyPR [13], to determine
the centrality score of each concept in an ontology. Com-

123

C. Lei et al.

pared to PageRank, theOntologyPR is customized to several
unique features specific to ontologies such as inheritance and
unions. Belowwedescribe these designs and theOntologyPR
algorithm can be found in [13].

Inheritance. To cater for inheritance relationships, we
remove these relationships from the ontology while running
the initial PageRank algorithm. This allows us to calculate
the page ranks of a concept based on the links from other con-
cepts that are not children of the same concept. The reason is
that a parent concept would accumulate a significant amount
of weight from its children and grandchildren, which does
not truly reflect the importance of the parent concept. On
the other hand, a child concept would also inherit its parent
weight, which introduces noise into the centrality estimation.
After computing the page rank values of all concepts, we re-
attach these relationships and update the page ranks of each
concept by doing a depth-first traversal over its inheritance
relationships to find the parent with the highest page rank.
If this value is higher than the current page rank of the con-
cept, we use this value as the new page rank of the concept.
This enables a child concept to inherit the page rank of its
parent.

Unions. The union concept in an ontology represents a
logical membership of two or more concepts. Any incom-
ing edge to a union concept can therefore be considered as
pointing to at least one of the member concepts of the union.
Similarly each outgoing edge can be considered as emanating
from at least one of the member concepts. To handle union
concepts, the OntologyPR algorithm iterates over all incom-
ing and outgoing edges to/from the union concept. For each
incoming edge to the union concept, we create new edges
between the source concept and each of themember concepts
of the union. For each outgoing edge, similarly,we create new
edges between the destination and each of the member con-
cepts of the union. Thus the page rank mass is appropriately
distributed to/from the member nodes of the union. Finally,
the union node itself is removed from the graph as its contri-
bution toward centrality analysis has already been accounted
for by the new edges to/from the member concepts of the
union.

Out-degree of Concepts. In the default PageRank algo-
rithm, the weight distribution of the page rank is proportional
to the in-degree of a node as it receives page rank values from
all its neighbors that point to it. In other words nodes with a
high in-degree would tend to have a higher page rank than
nodes with a low in-degree. However, for a domain ontology,
we observe that both in-degree and out-degree are equally
important in terms of the key concept. Hence, we introduce
a reverse edge in the ontology, essentially making the graph
equivalent to an undirected graph. Then, the OntologyPR
algorithm uses this modified ontology as an input to deter-
mine the centrality score of each concept.

To accurately capture the relative importance of the con-
cepts, we further leverage the data characteristics and access
frequency information to rank all concepts. The ranking score
for a concept is defined as follows.

Score(ci) = ci .pr × AF(ci)

Size(ci)
(3)

where ci .pr denotes the PageRank score of ci , AF(ci)
denotes the access frequency of ci including accessing all
data properties of ci , and Size(ci) denotes the size of ci
including all data properties of ci .

Algorithm 8 Concept-Centric Algorithm
Input: Ontology O = (C, R, P), space limit S
Output: A property graph schema PGS
1: O ← ontologyPR(O)
2: Csrt ← sort(C)
3: for each c ∈ Csrt do
4: for each r ∈ c.R do
5: S′ ← S
6: O , S ← applyRules(r , S′)
7: if S < 0 then
8: break
9: end if
10: end for
11: end for
12: PGS ← generatePGS(O)
13: return PGS

Based on Eq. 3, our concept-centric algorithm (Algo-
rithm 8) first sorts all concepts in a descending order of their
respective scores (Lines 1-2). Then, it iterates through each
concept c (Lines 3-8). For each concept, the algorithm uti-
lizes the applyRules procedure to apply all rules (Sect. 4.1)
to the relationships connecting to c. During this process, the
algorithm updates the space limit as it is consumed by the
rules. Once the space is fully exhausted, the algorithm termi-
nates (Lines 7-8) and returns the optimized property graph
schema (Line 10).

4.2.2 Relation-centric algorithm

Intuitively, the concept-centric algorithm prioritizes the rela-
tionships of the key concepts in an ontology by leveraging
information such as access frequency, data characteristics,
and structural information from the ontology. However, the
relationship selection is limited to each concept locally. To
address this issue, we propose the relation-centric algorithm
based on a cost-benefit model for each type of relationships.

Cost Benefit Models. The union rule, introduced in
Sect. 4.1, connects the member concept directly to all con-
cepts that are connected to the union concept. Then, the
benefit of applying this rule to a union relationship r is the
access frequency of r , and the cost is the number of edges

123

HERMES: data placement and schema optimization...

that we copy from the union concept to the member concept.
Formally:

Bene f i t(r) = AF(ci
r−→ c j)

Cost(r) = ∑
r ′∈(ci .Ri\Run)

|r ′|, (4)

where ci denotes the union concept and |r ′| denotes the num-
ber of edges between the instance vertices of ci and the ones
of a neighborhood concept5 of ci .

The benefit of applying the inheritance rule to an inheri-
tance relationship is the access frequency of that relationship
multiplied by the Jaccard similarity between ci .Pi and c j .Pj .
Depending on that similarity, the cost of inheritance rule can
be either the number of new edges attached to the parent, or
the number of new edges attached to the child. Formally:

Bene f i t(r) = AF(ci
r−→ c j .Pj) × J S(ci , c j)

Cost(r) =

⎧
⎪⎪⎨

⎪⎪⎩

∑
p∈c j .Pj

|c j | × p.t ype + ∑
r∈(c j .R j\Rih) |r |

if θ1 < J S(ci , c j),∑
p∈ci .Pi |ci | × p.t ype + ∑

r∈(ci .Ri\Rih) |r |
if J S(ci , c j) < θ2,

(5)

where J S(ci , c j) denotes the Jaccard similarity between
ci .Pi and c j .Pj , p.t ype indicates the data type size of
p (e.g., the size of INT, STRING, etc.),

∑
p∈c j .Pj

|c j |×
p.t ype (

∑
p∈ci .Pi |ci | × p.t ype) denotes the space over-

heads incurred by propagating c j .Pj (ci .Pi) to ci (c j), and∑
r∈(ci .Ri\Rih) |r | (

∑
r∈(c j .R j\ Rih) |r |) denotes the space

overhead incurred by connecting the neighbors of ci (c j)
to c j (ci).

Similarly, the cost-benefit model for one-to-many rule,
leveraging both data characteristics and access frequency
information, is defined as:

Bene f i t(r) = AF(ci
r−→ c j .p)

Cost(r) = |r | × p.t ype,
(6)

where |r | × p.t ype denotes the space overhead incurred by
replicating p as a data property of type L I ST to ci .

As described in Sect. 4.1, eachM:N relationship is equiv-
alent to two 1:M relationships. Thus, we first convert each
M:N relationship in the ontology into two 1:M relationships,
and then use Eq. 6 to decide the cost-benefit for each of them.
Potentially some of the original M:N relationships could be
optimized for only one direction. This increases the flexibil-
ity of applying many-to-many rule such that more frequently
accessed data properties can be propagated to the other end
of the relationship.

5 The neighborhood concepts do not include the member concepts
of ci .

With the cost and benefit scores, our goal is to select a
subset of relationships in the ontology thatmaximize the total
benefit within the given space limit. We map our relationship
selection problem to the 0/1 Knapsack Problem, which is
NP-hard [63].

Proposition 1 (Reduction) If both benefit and cost of a rela-
tionship are positive, then every instance of the relationship
selection problem can be reduced to a valid instance of the
0/1 Knapsack problem.

Proof The proof can be found in the technical report
[13]. ��

Here, we adopt the fully polynomial time approximation
scheme (FPTAS) [63] for our relation selection problem,
which guarantees that the benefit of the optimized prop-
erty graph schema Bene f i t(PGS) is within 1-ε (ε > 0)
bound to the benefit of the optimal property graph schema
Bene f i t(PGSopt).

Algorithm 9 takes as inputs an ontology and the space
limit. Similar to Algorithm 7, it computes the Jaccard sim-
ilarity scores for all inheritance relationships (Lines 1-3).
Then it computes the cost and benefit for each relationship
in the ontology O using Eqs. 4, 5, and 6 (Lines 4-8). Next,
the FPTAS algorithm is used to select the near-optimal sub-
set of relationships Ropt with the given space limit S (Line
9). In applyRules procedure, the algorithm applies the corre-
sponding rules; r ∈ Ropt (Lines 10-12). Lastly, an optimized
property graph schema is generated (Lines 13-14).

Algorithm 9 Relation-Centric Algorithm
Input: O = (C, R, P), space limit S
Output: A property graph schema PGS
1: for each r ∈ R of type inheri tance do
2: r . js ← computeJS(r)
3: end for
4: Bene f i t,Cost ← ∅
5: for each ri ∈ R do
6: Bene f i t[i] ← Benefit(ri)
7: Cost[i] ← Cost(ri)
8: end for
9: Ropt ← knapsack(R, Bene f i t,Cost, S)

10: for each ri ∈ Ropt do
11: O ← applyRules(ri)
12: end for
13: PGS ← generatePGS(O)
14: return PGS

5 Experimental study

5.1 Experimental setup

Infrastructure.We instantiatedHermeswith three different
types of backend datamanagement systems, including a rela-

123

C. Lei et al.

tional DBMS (Db26), a document store (Watson Discovery
Services (WDS) built on top of Elasticsearch), and a graph
store (either Neo4j [5] or JanusGraph [4]). Each provides
different query processing capabilities. For example, WDS
is a document-oriented data store for complex search queries.
However, it lacks support for full SQL-style joins as opposed
to Db2. Neo4j and JanusGraph are the graph database plat-
forms specialized in various complex graph processing tasks.

Data Sets. We use the following two data sets and their
corresponding ontologies.

1. Financial data set (FIN) [54] includes data from twomain
sources: Securities and Exchange Commission (SEC) [7]
and Federal Deposit Insurance Corporation [2]. The size
of the data set is approximately 53GB. The corresponding
financial ontology contains 28 concepts, 96 properties,
and 138 relationships.

2. Medical data set (MED) contains medical knowledge that
is used to support evidence-based clinical decision and
patient education. The total size of this data set is around
12 GB. The corresponding medical ontology consists of
43 concepts, 78 properties, and 58 relationships.

Methodology andMetrics. To evaluate the effectiveness
of the data placement algorithms, we choose query work-
loads over FIN andMED based on the most commonly seen
operations in their respective application. Specifically, our
workloads consist of a variety of select-project-join (SPJ)
and aggregation queries similar to Q1–Q3 shown in Fig. 3.
Fuzzy-text matching, top-k operation, range predicates, and
graph operations (i.e., graph pattern matching, vertex prop-
erty lookup, graph analytical) are also involved in both
workloads on FIN and MED knowledge bases.

To evaluate the quality of the property graph schema pro-
duced by our algorithms, we vary the space limit and the
Jaccard similarity thresholds for inheritance relationships
with two different workload summaries (uniform and Zipf).
Specifically, we show how effectively PGSG leverages the
given space limit, how robust PGSG is to variousworkloads,
and how sensitive PGSG is to different similarity thresholds.
PGSG chooses the property graph schemawith a higher total
benefit score from relation-centric (RC) and concept-centric
(CC) algorithms.Wemeasure the quality of a property graph
schema by Benefit Ration BR = BSC

BNSC
, where BNSC is the

total benefit score of the property graph schema generated
by Algorithm 7 without any space constraint, and BSC indi-
cates the total benefit score achieved by either RC or CC
algorithm.

To verify the graph query performance, we express most
graph queries in both Cypher [30] and Gremlin [3], includ-
ing path, reachability, and graph analytical queries. Among

6 Db2 is a registered trademark of IBM Corporation

these query types, we construct a variety of query workloads
conforming to different workload distributions over both
financial and medical data sets. The details of these query
workloads are described in Sect. 5.5. We use latency as the
metric to measure these graph queries. Latency is measured
in milliseconds as the total time of all queries in a workload
executed in sequential order. We also use the number of edge
traversals required in a query as the second metric.

5.2 Effectiveness of data placement algorithms

In this experiment, we evaluate the effectiveness of our
data placement algorithms and compare them with alterna-
tive approaches for different query workloads. Each of our
capability-based data placement algorithms stores data in one
or more data stores based on the operations in a given work-
load and the capability of the data store.We therefore evaluate
the effectiveness of the data placement algorithms in terms of
the amount of replication needed to guarantee no stored7 data
movement at query processing time for a given workload.

We compare our two data placement algorithms,MC and
OC, with two alternative techniques, including full replica-
tion (FULL), which replicates each data item across all data
stores, and ideal data placement with minimal data replica-
tion (IDEAL). IDEAL is computed by an exhaustive search
among all possible data placement plans. For each candi-
date data placement plan, we compute its replication ratio
and choose the one with the minimal ratio. We study the
data replication overhead of these algorithms by varying the
replication ratio from the query workloads over both FIN
and MED knowledge bases. The replication ratio is defined
as RR =

∑
Rci /|C |, ∀ ci in C , where Rci is the number

of stores that are required to support the operations on each
concept ci accessed in the query workload, and C is the total
number of concepts in the ontology. The replication overhead
is defined as Overhead = (RRact - RR)/RR, where RRact is
the actual replication ratio required by the above methods.
Intuitively, the closer the actual data replication is to RR, the
more effective the data placement algorithm will be. Hence
the replication overhead of the IDEAL method is always 0,
which is not shown in Fig. 14.

As depicted in Fig. 14, all algorithms generate identical
data placement plan without any overhead in the extreme
case (RR = 3). In other cases, MC algorithm consistently
outperforms the alternative approaches with minimal data
replication overheads. The reason is twofold. First,we exploit
the minimum set cover algorithm that is able to identify the
optimal solution in most cases [55]. Second, the number of
backend data stores used in the experiments is 3. Hence, the

7 We make a distinction between stored data that is initially placed in
the data stores and intermediate data that is generated during a query
execution.

123

HERMES: data placement and schema optimization...

Fig. 14 Data replication overhead (top: MED, bottom: FIN)

possibility of placing data to an unnecessary data store is rel-
atively low. Our experience with various uses cases suggest
that a small number of stores are often sufficient to sup-
port a variety of query types over domain-specific enterprise
knowledge bases.

On the contrary, OC algorithm can only produce close
to optimal data placement plan when the replication ratio is
very low (i.e., RR = 1.25). It is not as robust as MC algo-
rithm when the complexity of the given workload increases.
Comparing FIN andMED, we observe that the quality of the
data placement plan produced by OC algorithm over MED
is slightly better than the one produced over FIN. The reason
is that our MED knowledge base consists of fewer concepts
compared to FIN. Thus, the replication overhead incurred by
OC is relatively low.

5.3 Impact of data placement on query execution

We evaluate the impact of our data placement algorithms on
the performance of query executionwith amicro-benchmark,
consisting of a few representative queries selected from the
workloads over FIN and MED (Fig. 15). Queries Q1 and
Q2 require operations supported by a relational database
(Db2) and a document store (WDS), while query Q3 requires
operations supported by a relational database (Db2) and a

Fig. 15 Micro-benchmark OQL queries

graph store (Neo4j). We use latency in seconds as the met-
ric (Table 5), including the execution time on different data
stores, and the time spent on data materialization, transfor-
mation and transmission, represented as datamovement time.

Hermes runtime exploits the capability-based data place-
ment and executes Q1 usingDb2 as themediator since it sup-
ports a richer set of operations (e.g., JOIN, AGGREGATION,
etc.). Db2 first executes the fuzzy search predicate on WDS
as aUDF and then retrieves its results. The rest of the query is
executed on Db2. The alternative plan is generated and exe-
cuted against a data placement that has not been optimized
based on the data store capabilities. The plan first executes a
portion of the query on Db2 and generates the intermediate
results that are required to be moved to WDS for the fuzzy
search. In this process, the intermediate results from Db2
need to be first ingested and indexed in WDS, which leads to
significant overheads. As shown in Table 5, the total average
latency of Q1 by Hermes is 2.54 seconds, which is 2 orders
of magnitude (170x) faster compared to the alternative plan.
Looking more closely, we observe that the alternative plan
incurs a high overhead for datamovement due to sub-optimal
data placement.

Q2 is executed on the MED knowledge base. It contains
operations similar to Q1 with an additional top-k operation
involved. As shown in Table 5, the total average latency of
Hermes’s plan is 1.11 seconds, which is 13x faster than the
alternative plan based on a sub-optimal data placement. It
leads to unnecessary data transformation and movement of
approximately 17,000 records from Db2 to WDS.

123

C. Lei et al.

Table 5 Micro-benchmark query execution time (seconds)

Queries Breakdown Hermes Alternative

Q1 (FIN) Execution 2.01 110.2

Movement 0.53 231.2

Q2 (MED) Execution 1.11 4.36

Movement 0.17 16.17

Q3 (MED) Execution 2,883 6,530

Movement 581 0

Fig. 16 Varying space constraints (MED)

Fig. 17 Varying space constraints (FIN)

Q3 finds patients with a particular condition (381) and
other similar conditions (SNOMED CT diseases), which
requires a graph reachability sub-query. Thanks to the
capability-based data placement, Hermes’s execution plan
executes the reachability sub-query to find similar disease on
the graph backend that stores the SNOMED ontology. It then
combines the results with the rest of the operations on Db2.
The alternative plan executes on a sub-optimal data place-
ment that places all the data on Db2. As shown in Table 5,
Hermes’s plan executes efficiently in 3.4 seconds, whereas
the alternate plan takes 6.5 seconds due to the expensive self-
join involved to evaluate the reachability query. This problem
can be further exacerbated if a query contains multiple reach-
ability sub-queries.

5.4 Property graph schema quality

Varying Space Constraint. In Figs. 16 and 17, we focus
on the quality of the property graph schema produced by
our concept-centric (CC) and relation-centric (RC) algo-

rithms compared to our method without space constraints
NSC (Algorithm 7). We choose two commonly seen work-
load summaries, uniform and Zipf distributions. Namely, the
access frequencies of concepts in the ontology follow either
uniform or Zipf distribution. And the skew factor of Zipf
distribution is set to 1. The Zipf workload gives more access
to the key concepts in the ontology. We first use NSC to
produce an optimal property graph schema PGSNSC with-
out any space constraint, and then compute the total benefit
score BNSC achieved by PGSNSC aswell as the total amount
of space SNSC needed by PGSNSC . We also compute the
total amount of space SDI R needed by the direct mapping
algorithm from the given ontology (approximately 29GB for
MED and 106GB for FIN, respectively). The total amount of
space needed by the direct mapping algorithm SDI R is 12GB
forMED and 53GB for FIN, respectively. We, then, vary the
space constraint from SDI R to SNSC , such that the range of
the Y-axis in Figs. 16 and 17 is from 0 to 1. Figs. 16 and 17
show results fromMED and FIN data sets, respectively.

In Fig. 16, we observe that RC consistently outperforms
CC with both uniform and Zipf workloads. The reason is
that RC creates a global ordering of all relationships, and
the global ordering is near-optimal with respect to the given
space constraint due to the adopted approximate Knapsack
algorithm. On the contrary, CC suffers from a rather local
optimal ordering with respect to each concept. Hence, it
misses the opportunity to utilize the space formore beneficial
relationships. Moreover, we observe that with approximately
20% of the maximum space constraint, both algorithms are
able to produce high quality property graph schemas which
achieve above 50% of the total benefit. In other words,
both algorithms can effectively utilize the rather limited
space. Lastly, both RC and CC produce the same property
graph schema as PGSNSC when the space constraint reaches
100%, which substantiates Theorem 1.

Similarly, RC outperforms CC In Fig. 17, as CC utilizes
the space for one concept at a time, missing the opportu-
nities for more beneficial relationships in the ontology. We
also observe that both algorithms, with uniform and Zipf
workloads, have a couple of drops when the space constraint
increases. The reason is primarily due to the complexity of
FIN ontology. Given that the inheritance relationships are
more dominant in FIN, the given space may be exhausted
quickly by certain inheritance relationships. Again, RC and
CC produce the same property graph schema as PGSNSC

with 100% space constraint.
Varying Jaccard Similarity. In Fig. 18, we show the

sensitivity of both CC and RC with respect to the Jac-
card similarity thresholds (θ1 and θ2). In this experiment, we
choose FIN ontology because it consists of multiple inheri-
tance relationships. Uniform and Zipf workload distributions
are used to examine the robustness of our CC and RC algo-
rithms. Note that the space constraint in this experiment is

123

HERMES: data placement and schema optimization...

Fig. 18 Varying Jaccard thresholds (FIN)

set to (SNSC -SDI R)/2 under each specific Jaccard similarity
threshold. The reason is that the cost (space overhead) of the
same inheritance relationship can vary (Eq. 5) depending on
the similarity threshold. Consequently, the space consump-
tion of the optimal property graph changes under different
thresholds. As shown in Fig. 18, both CC and RC are robust
under different similarity thresholds. In the worst case, they
achieve more than 70% of the maximum benefit score under
50% space constraint. This shows that when the cost-benefit
of an inheritance relationship changes due to a different
threshold, both CC and RC can adjust accordingly by choos-
ing other more beneficial relationships to optimize. Hence,
the total benefit scores achieved by both algorithms are rela-
tively stable.

In summary, CC and RC produce high quality property
graph schemas under various settings. They work effectively
with any given space constraints. Moreover, RC produces a
near-optimal property graph schema and outperforms CC in
most cases. Our property graph schema generator leverages
both algorithms to choose the property graph schema with
the highest benefit score under any space constraints.

5.5 Graph query execution

In this section, we focus on the graph query execution per-
formance over the property graphs created by our ontology-
driven approach. We use both MED and FIN data sets to
conduct our experiments. First, we create a micro bench-
mark to empirically examine whether the property graph
schema from our approach can actually benefit a set of graph
primitives including simple pattern matching, vertex prop-
erty lookup, and aggregation on vertices. Second, we study
the overall execution time for a given graph query work-
load by mixing the above graph primitives. We run the graph
queries, expressed in Cypher and Gremlin, on Neo4j and
JanusGraph, respectively. Note that our goal is not to com-
pare the performance between two systems, rather to show
that our schema optimization results in query performance
improvements irrespective of the backend.

Microbenchmark with Graph Primitives. Using both
MED and FIN data sets, we compare the query performance

of the property graph created by the optimized graph schema
(OPT) to the baseline property graph created by a direct map-
ping of the ontology (DIR). The following parameter settings
are used to produce OPT : Jaccard similarity thresholds θ1 =
66%, θ2 = 33%, and space constraint 0.5 (SNSC − SDI R).
All queries (Q1-Q12) are first expressed againstDIR and then
rewritten into the semantically equivalent queries over OPT.
These queries are constructed according to the query patterns
in [17]. We list several representative queries below.

Q1: MATCH (d:Drug)-[p:cause]->(r:Risk)
<-
[p2:unionOf]-(ci:ContraIndication)
RETURN d.name
Q3: MATCH (aa:AutonomousAgent)<-[r1:isA
]-
(p:Person)<-[r2:isA]-(cp:ContractParty)
RETURN aa
Q5: MATCH (dl:DrugLabInteraction)-[r:
isA]->
(di:DrugInteraction)
RETURN di.summary
Q7: MATCH (n:Corporation)
RETURN n.hasLegalName
Q9: MATCH p=(d:Drug)-[r:hasDrugRoute]->
(dr:DrugRoute)
RETURN dr.drugRouteId, size(COLLECT(
d.brand)) AS numberOfDrugBrands
Q11: MATCH p=(con:Contract)-[r:
isManagedBy]->
(corp:Corporation)
RETURN size(COLLECT(con.
hasEffectiveDate)) AS
numberOfEffectiveDates

As shown in Fig. 19, the results are unequivocal. The
optimized schema has significant advantages over the direct
mapping schema for all types of queries. The graph pattern
matching queries (Q1-Q4) report all matches of a sub-graph
with 3 vertices and 2 edges in the property graph. Query exe-
cution times with our approach are at least 2.4 times faster
than the direct mapping schema. The number of edge traver-
sals onDIR is always 2 as the query is specified with 2 edges
connecting 3 vertices. On the other hand, our property graph
only requires at most 1 edge traversal as some of the neighbor
vertices have been already merged with the starting vertices.

Q5-Q8 are vertex property lookup queries. Both Q5 and
Q8 are interested in a property of a vertex of a parent concept,
and the starting vertex is a vertex of a child concept. Q6 starts
from a vertex and looks for a property of its neighbor vertex.
OPT has the property of type List with the starting vertex,
and is able to return the result without any edge traversal.
Q7 looks for a property of the starting vertex. In this case,
OPT and DIR have identical query performance as no edge

123

C. Lei et al.

Fig. 19 Microbenchmark - pattern matching (Q1-Q4), property lookup (Q5-Q8), aggregation (Q9-Q12)

traversal is required. Hence OPT takes advantage of having
the property of the parent concept available at the starting
vertex, and consequently returns the result without any edge
traversals. Therefore, the query runs more than an order of
magnitude slower on the property graph of DIR than the one
on OPT in the worst case.

Q9-Q12 are graph aggregation queries that involve traver-
sal from one vertex to the other. They count the number of
neighbors of the starting vertex. On average, the query exe-
cution time is an order of magnitude faster forOPT approach
compared to DIR. Again, the reason is that the aggrega-
tion on the neighbor vertices can be instantaneously returned
from the starting vertex. The above results suggest that using
the proposed ontology-driven approach can bring significant
benefits to a variety of graph queries.

Lastly, we observe that the performance gain is more
substantial on Neo4j compared to JanusGraph (Q3, Q4,
Q9, etc.). Note that this comparison is not about Neo4j vs
JanusGraph, but rather using them as examples to show that
disk-based graph systems (e.g., Neo4j) benefit much more
from our techniques, as the optimized schema requires sig-
nificantly less disk I/O. Namely, the graph system loads less
number of vertices and edges into memory. We expect such
benefit to become even greater when the size of the property
graph increases. In addition, Table 6 reveals that OPT sub-
stantially reduces the number of edge traversals required in
most queries, which leads to significant computational sav-
ings and performance gains. In several cases (e.g., Q3, Q6),
edge traversals can be completely avoided as the queried
information is available locally within the starting vertices.
On the other hand, the performance gains of certain queries
(e.g., Q5, Q8, Q12) are not as significant as others, even
though the number of edge traversals with OPT is much
smaller than the one with DIR. The reason is that the costs
of lookup and return operations are non-trivial in both DIR
and OPT, which can be observed from the latency of these
queries in Fig. 19.

Graph Query Workload Performance. To evaluate the
runtime performance of the property graph schema generated
by our approach, we first generate a set of query workloads,
including both uniform and Zipf distributions in terms of the

Table 6 Microbenchmark - number of edge traversals

Edge Traversals # Edge Traversals

DIR OPT DIR OPT

Q1 21,608 6,072 Q7 0 0

Q2 288,142 115,014 Q8 493,588 0

Q3 36,272 0 Q9 67,397 0

Q4 510,460 97,614 Q10 429,636 15,327

Q5 38,768 0 Q11 524,265 0

Q6 32,586 0 Q12 110,4756 548,262

Table 7 Benefit ratio w.r.t BNSC

Skew MED (%) FIN (%)

Factor 0 1 1.5 2 0 1 1.5 2

RC 56 59 62 71 67 71 74 88

CC 30 43 50 63 65 74 80 88

access frequency of the concepts in the ontology. We vary
the Zipf’s skew factor from 0 (i.e., uniform distribution) to 2
(highly skewed). All query workloads consist of 15 queries
of mixed types (i.e., pattern matching, lookup, and aggrega-
tion), similar to the ones used in the microbenchmark. The
space limit is set to 20% of the space consumed by NSC (i.e.,
15.4GB forMED and 80GB for FIN). The similarity thresh-
olds are θ1 = 66% and θ2 = 33%. The optimized schemas
(OPTMED andOPTFIN) are produced by the best performing
algorithm of RC and CC.

Table 7 shows the quality of the property graph schema
produced by RC and CC compared to the one without space
constraints NSC. The benefit ratio (BR) is defined as BR =
BSC/BNSC , where BSC is the total benefit score achieved by
either RC or CC algorithm, and BNSC is the benefit score of
the property graph schema generated byAlgorithm 7without
any space constraint. We observe that both RC and CC cor-
rectly prioritize the most cost-effective relationships when
the workloads are highly skewed. RC performs better than
CC over MED, because MED has more data properties per
concepts and RC makes more flexible decisions in terms of

123

HERMES: data placement and schema optimization...

Fig. 20 Total query latency (MED & FIN)

which relationships to optimize. On the other hand, CC per-
forms better than RC over FIN as it successfully selects few
concepts that are frequently accessed by the highly skewed
workloads.

We compare our optimized schemas to the direct mapping
schemas (DIRECTMED , DIRECT F I N) on both JanusGraph
and Neo4j. The total query latency is used to measure the
performance on these property graphs corresponding to dif-
ferent schemas.

Figure 20 shows the total query latency in log scale.
Both OPTMED and OPTF I N offer significant performance
boosts to the graph query workloads on both JanusGraph and
Neo4j. In Fig. 20a, we observe that the total query latency on
the optimized schema is around 7 and 22 times faster than
the direct mapping one overMED and FIN, respectively. The
winning margin is even bigger on Neo4j (Fig. 20b). The total
query latency on both optimized schema is approximately 2
orders of magnitude faster than the direct mapping. More-
over, we also observe that the total query latency decreases
with increasing skew factor. Both OPTMED and OPTFIN

achieve the lowest latency when the workload distributions
are highly skewed. This indicates that the most frequently
accessed concepts and relationships in the workloads are
chosen to be optimized given the space limit. Based on these
results, we verify that the designed rules for different types of
relationships in the ontology are effective in terms of reduc-
ing edge traversals and consequently improving the graph
query performance. Furthermore, we demonstrate that our
approach can effectively utilize the given space constraint by
leveraging information such as data distribution and work-
load summaries.

5.6 Efficiency of property graph schema algorithms

Finally, we study the execution time of our concept-centric
and relation-centric algorithms (Table 8). First, we observe
that both CC and RC produce an optimized property graph
schema in less than one second with different space con-
straints (shown in Table 8 as percentages of the space
consumed by Algorithm 7). The optimization time of both
algorithms is negligible compared to an exhaustive search

Table 8 Efficiency of RC & CC (time in ms)

Space MED FIN

Constraint 25% 50% 75% 25% 50% 75%

RC 23 23 26 192 188 193

CC 34 36 36 373 344 372

approach, which even failed to produce an optimal schema
for MED after 3 hours. Second, neither of the algorithms is
sensitive to the space constraint, since both algorithms have
a polynomial time complexity with respect to the number of
concepts and relationships in the given ontology. Third,RC is
consistently faster than CC, and the performance difference
is more significant in FIN. This is due to the cost of Ontolo-
gyPR procedure being dominant inCC. It usually takes more
iterations to converge when the ontology (i.e., FIN) is more
complex.

6 Related work

Our work is related to knowledge bases [43], ontology-based
access systems [64], as well as poly stores [1,21,29,31,35,37,
38]. In this section, we briefly discuss these systems, and then
focus on important works in the areas of data placement and
schema optimization, highlighting the main differences to
our approach.

The emergence of many large scale knowledge bases
(KBs), such as DBpedia [39] and YAGO 4 [60], provide a
new opportunity to represent the knowledge of the objec-
tive world. These KBs are open-domain and often stored in
a single data store with a unified schema. Standard query
languages such as SPARQL have been used to access the
KBs. However, it remains tedious and difficult for end users
to query such KBs because of the complexity of the query
languages and the KB schema. Instead of forcing the users to
express all their query needs in a single query language like
SPARQL, we propose Hermes which uses multiple back-
ends with different query languages to provide a rich variety
of query types over the KB.We optimize data placement and
physical data organization to minimize redundancy, while
providing high performance.

More recently, polystore systems [1,21,29,31,35,37,38]
have been developed to address the above-mentioned limi-
tations. These systems do not hide the heterogeneity of the
data stores. Instead, they provide an integrated, single point
of access to several data stores; through one or more query
languages without a notion of a global schema. The user
queries can contain various sub-queries; each is expressed in
its own data model and query language, and executed by a
respective backend storage engine. Moreover, these systems

123

C. Lei et al.

provide a runtime environment (thin middleware) to coordi-
nate and combine query execution across distinct data stores.
In this paper, we adapt a similar architecture to support a rich
variety of queries over KBs.

Several works such as [1,35,45] attempt to enable access
to data stored across multiple data backends with a single
interface and point of access. However, these systems take
the existing data placement as given and only aim to route
queries across different stores based on data locality. They
do not consider the data placement according to the query
workloads nor the capabilities of each underlying data back-
end. Hence they are likely to suffer from significant data
movement penalties at query time. Du et al. [28] introduce a
workload-driven data placement approach to support (R/W)
ETL (OLAP) workloads over a streaming engine and an
OLAP engine. In particular, it focuses on balancing ingestion
and query analysis performance as both stores can perform
similar operations but have different storage capacity and
access time trade-offs.

Extensive work is available for the schema design prob-
lem in relational database and NoSQL systems [12,20,25,
36,46,65]. Relational database systems provide a clean sep-
aration between logical and physical schemas. The logical
schema includes a set of table definitions and determines a
physical schema consisting of a set of base tables [12,65].
The physical layout of these base tables is then optimized
with auxiliary data structures such as indexes and material-
ized views for the expected workload [12,36]. Typically, the
physical design often involves identifying candidate physical
structures and selects a good subset of these candidates [25].
NoSE [46] is introduced to recommend schemas for NoSQL
applications. Its cost-based approach utilizes a binary integer
programming formulation to generate a schema based on the
conceptual data model from the application.

In recent years, RDF has been growing significantly for
expressing graph data. A variety of schemas have been
proposed for physically storing graph data in both central-
ized and distributed settings [10,18,23,33,44,47,48]. Some
of these works focus on optimizing RDF data storage
and SPARQL queries based on either workload statistics
[44,47,48] or heuristics [62]. Other works [10,18,23,33]
attempt to transform RDF data into relational data and pro-
vide SPARQL views over relational schemas, leveraging the
many years of experience in RDBMS schema optimization.
Angles et al. [14] introduce direct mappings for transforming
an RDF into a property graph, including data and schema.

Similar approaches [34,59] are introduce to address the
problem in the context of property graphs. GRFusion [34]
focuses on filling the gap between the relational and the graph
models rather than optimizing the graph schema to achieve
better query performance. SQLGraph [59] and Db2 Graph
[61] introduce a physical schema design that combines rela-

tional storage for adjacency information with JSON storage
for vertex and edge attributes. They translateGremlin queries
into SQL queries to leverage relational query optimizers.

Our ontology-driven approach is different for the fol-
lowing reasons. First, our approach produces a high-quality
schemaapplicable to anygraph systemcompatiblewith prop-
erty graphmodel andGremlin or Cypher queries. Second, we
exploit the rich semantic information in an ontology to guide
the schema design. Last but not least, our approach can fur-
ther leverage these techniques to decide how the property
graph should be stored on different storage backends.

7 Conclusion

In this paper, we introduce an ontology-driven polystore
system, Hermes, for querying domain-specific enterprise
knowledge bases. We tackle two critical design challenges
in polystores: data placement and schema optimization.
We proposed data placement algorithms that partition the
domain ontology into overlapping subsets and store the cor-
responding data in different data stores depending on their
capabilities, aswell as the operations performedon the data in
a given workload. We also leverage the rich semantic infor-
mation in a domain ontology to drive the property graph
schema optimization for high query performance. Our exper-
imental evaluation uses two real-world KBs to demonstrate
the effectiveness of our data placement and schema opti-
mization techniques on our Hermes with a relational store,
a document store, and a graph store. The results show that the
data placement method generates the near-optimal plan with
minimal data replication overhead. The schema optimiza-
tion algorithms produce high-quality schemas, achieving up
to 2 orders of magnitude speed-up compared to alternative
schema designs.

References

1. VLDBWorkshop: Poly’20. https://sites.google.com/view/poly20/
program

2. Federal deposit insurance corporation. https://www.fdic.gov/
regulations/resources/call/index.html (2019)

3. Gremlin query language. https://tinkerpop.apache.org/gremlin.
html (2019)

4. Janusgraph: Distributed graph database. http://janusgraph.org/
(2019)

5. The neo4j graph platform. https://neo4j.com/ (2019)
6. Owl 2 web ontology language document overview. https://www.

w3.org/TR/owl2-overview/ (2019)
7. Securities and exchange commission. https://www.sec.gov/dera/

data/financial-statement-data-sets.html (2019)
8. Apache solr. https://lucene.apache.org/solr/ (2020)
9. Elasticsearch:Open source search&analytics. https://www.elastic.

co/ (2020)

123

https://sites.google.com/view/poly20/program
https://sites.google.com/view/poly20/program
https://www.fdic.gov/regulations/resources/call/index.html
https://www.fdic.gov/regulations/resources/call/index.html
https://tinkerpop.apache.org/gremlin.html
https://tinkerpop.apache.org/gremlin.html
http://janusgraph.org/
https://neo4j.com/
https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/owl2-overview/
https://www.sec.gov/dera/data/financial-statement-data-sets.html
https://www.sec.gov/dera/data/financial-statement-data-sets.html
https://lucene.apache.org/solr/
https://www.elastic.co/
https://www.elastic.co/

HERMES: data placement and schema optimization...

10. Abadi, D.J., Marcus, A., Madden, S., Hollenbach, K.: SW-Store: a
vertically partitioned DBMS for semantic web data management.
VLDB J. 18(2), 385–406 (2009)

11. Abiteboul, S., Hull, R., Vianu, V.: Foundations of databases:
the logical level. Addison-Wesley Longman Publishing Co., Inc.,
Boston (1995)

12. Agrawal, S., Chaudhuri, S., Narasayya, V.R.: Automated selection
of materialized views and indexes in sql databases. VLDB 2000,
496–505 (2000)

13. Alotaibi, R., Lei, C., Quamar, A., Efthymiou, V., Özcan, F.: Prop-
erty graph schema optimization for domain-specific knowledge
graphs. In: ICDE, pp. 924–935 (2021)

14. Angles, R., Thakkar, H., Tomaszuk, D.: Mapping rdf databases to
property graph databases. IEEE Access 8, 86091–86110 (2020)

15. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-
Schneider, P.F. (eds.): The description logic handbook: theory,
implementation, and applications. Cambridge University Press,
Cambridge (2003)

16. Bharadwaj, S., Chiticariu, L., Danilevsky, M., et al.: Creation
and interaction with large-scale domain-specific knowledge bases.
PVLDB 10(12), 1965–1968 (2017)

17. Bonifati, A., Martens, W., Timm, T.: An analytical study of large
SPARQL query logs. PVLDB 11(2), 149–161 (2017)

18. Bornea,M.A.,Dolby, J., Kementsietsidis, A., Srinivas,K.,Dantres-
sangle, P., Udrea, O., Bhattacharjee, B.: Building an efficient RDF
store over a relational database. In: SIGMOD, pp. 121–132 (2013)

19. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web
search engine. In: WWW, pp. 107–117 (1998)

20. Bruno, N., Chaudhuri, S.: Automatic physical database tuning: A
relaxation-based approach. In: SIGMOD, pp. 227–238 (2005)

21. Bugiotti, F., Bursztyn, D., Deutsch, A., I, I., I, M.: Invisible glue:
Scalable Self-Tuning Multi-Stores. In: CIDR (2015)

22. Chawathe, S.S., Garcia-Molina, H., Hammer, J., et al.: The TSIM-
MIS project: integration of heterogeneous information sources. In:
Proceedings of the 10th Meeting of the Information Processing
Society of Japan, pp. 7–18 (1994)

23. Chong, E.I., Das, S., Eadon, G., Srinivasan, J.: An efficient sql-
based RDF querying scheme. In: VLDB, pp. 1216–1227 (2005)

24. Christophides, V., Efthymiou, V., Stefanidis, K.: Entity Resolution
in the Web of Data. Theory and Technology. Morgan & Claypool
Publishers, Synthesis Lectures on the Semantic Web (2015)

25. Dash, D., Polyzotis, N., Ailamaki, A.: Cophy: a scalable, portable,
and interactive index advisor for large workloads. PVLDB 4(6),
362–372 (2011)

26. Deutsch, A., Xu, Y., Wu, M., Lee, V.: Tigergraph: a native MPP
graph database. CoRR abs/1901.08248 (2019)

27. Dong, X.L., Srivastava, D.: Big data integration. Synthesis lectures
on data management. Morgan & Claypool Publishers, San Rafael
(2015)

28. Du, J., Meehan, J., Tatbul, N., Zdonik, S.: Towards dynamic data
placement for polystore ingestion. In: BIRTE, pp. 2:1–2:8 (2017)

29. Duggan, J., Elmore, A.J., Stonebraker, M., Balazinska, M., Howe,
B., et al.: The BigDAWG polystore system. SIGMOD Record
44(2), 11–16 (2015)

30. Francis, N., Green, A., Guagliardo, P., et al.: Cypher: an evolving
query language for property graphs. In: SIGMOD, pp. 1433–1445
(2018)

31. Gog, I., Schwarzkopf, M., Crooks, N., et al.: Musketeer: all for
one, one for all in data processing systems. In: Proceedings of the
Tenth European Conference on Computer Systems, p. 2 (2015)

32. Han, X., Hu, L., Sen, J., Dang, Y., Gao, B., Isahagian, V., Lei, C.,
et al.: Bootstrapping natural language querying on process automa-
tion data. In: IEEE SCC, pp. 170–177. IEEE (2020)

33. Harris, S., Shadbolt, N.: SPARQL query processing with conven-
tional relational database systems. In: WISE, pp. 235–244 (2005)

34. Hassan, M.S., Kuznetsova, T., Jeong, H.C., Aref, W.G., Sadoghi,
M.: Extending in-memory relational database engines with native
graph support. In: EDBT, pp. 25–36 (2018)

35. Kharlamov, E., Mailis, T., Bereta, K., et al.: A semantic approach
to polystores. In: IEEE Big Data, pp. 2565–2573 (2016)

36. Kimura, H., Huo, G., Rasin, A., Madden, S., Zdonik, S.B.: Coradd:
correlation aware database designer for materialized views and
indexes. PVLDB 3(1–2), 1103–1113 (2010)

37. Kolev, B., Bondiombouy, C., Valduriez, P., et al.: The cloudmdsql
multistore system. In: SIGMOD, pp. 2113–2116 (2016)

38. LeFevre, J., Sankaranarayanan, J., Hacigumus, H., et al.: Miso:
souping up big data query processing with a multistore system. In:
SIGMOD, pp. 1591–1602 (2014)

39. Lehmann, J., Isele, R., Jakob, M., et al.: Dbpedia - A large-scale,
multilingual knowledge base extracted from wikipedia. Semantic
Web (2015)

40. Lei, C., Özcan, F., Quamar, A., Mittal, A.R., Sen, J., Saha, D.,
Sankaranarayanan, K.: Ontology-based natural language query
interfaces for data exploration. IEEE Data Eng. Bull. 41(3), 52–
63 (2018)

41. Leskovec, J., Rajaraman, A., Ullman, J.D.: Mining of Massive
Datasets, 2nd edn. Cambridge University Press, New York, NY,
USA (2014)

42. Levy, A., Rajaraman, A., Ordille, J.: Querying heterogeneous
information sources using source descriptions. Tech. rep, Stanford
InfoLab (1996)

43. Lu, J., Holubová, I., Cautis, B.: Multi-model databases and tightly
integrated polystores: Current practices, comparisons, and open
challenges. In: CIKM, p. 2301–2302 (2018)

44. Maduko, A., Anyanwu, K., Sheth, A.P., Schliekelman, P.: Esti-
mating the cardinality of RDF graph patterns. In: WWW, pp.
1233–1234 (2007)

45. McHugh, J., Cuddihy, P.E., Williams, J.W., et al.: Integrated access
to big data polystores through a knowledge-driven framework. In:
IEEE Big Data (2017)

46. Mior,M.J., Salem,K.,Aboulnaga,A., Liu,R.:Nose: schemadesign
for nosql applications. In: ICDE, pp. 181–192 (2016)

47. Neumann, T.,Moerkotte, G.: Characteristic sets: accurate cardinal-
ity estimation for RDF queries with multiple joins. In: ICDE, pp.
984–994 (2011)

48. Neumann, T., Weikum, G.: The RDF-3X engine for scalable man-
agement of RDF data. VLDB J. 19(1), 91–113 (2010)

49. Pirahesh, H., Hellerstein, J.M., Hasan, W.: Extensible/rule based
query rewrite optimization in starburst. In: SIGMOD, pp. 39–48
(1992)

50. Quamar, A., Kumar, K.A., Deshpande, A.: SWORD: scalable
workload-aware data placement for transactional workloads. In:
EDBT, pp. 430–441 (2013)

51. Quamar, A., Özcan, F., Xirogiannopoulos, K.: Discovery and cre-
ation of rich entities for knowledge bases. In: ExploreDB (2018)

52. Quamar, A., Straube, J., Tian, Y.: Enabling rich queries over hetero-
geneous data from diverse sources in healthcare. In: CIDR (2020)

53. Saha, D., Floratou, A., Sankaranarayanan, K., et al.: Athena: an
ontology-driven system for natural language querying over rela-
tional data stores. PVLDB 9(12), 1209–1220 (2016)

54. Sen, J., Ozcan, F., Quamar, A., Stager, G., Mittal, A.R., Jammi, M.,
Lei,C., Saha,D., Sankaranarayanan,K.:Natural languagequerying
of complex business intelligence queries. In: SIGMOD, pp. 1997–
2000 (2019)

55. Slavík, P.: A tight analysis of the greedy algorithm for set cover.
In: STOC ’96 (1996)

56. Stonebraker, M.: The case for polystores. https://wp.sigmod.org/?
p=1629 (2015)

57. Stonebraker, M., Cetintemel, U.: “one size fits all”: an idea whose
time has come and gone. In: ICDE, p. 2–11 (2005)

123

https://wp.sigmod.org/?p=1629
https://wp.sigmod.org/?p=1629

C. Lei et al.

58. Suchanek, F.M., Weikum, G.: Knowledge harvesting in the big-
data era. In: SIGMOD, pp. 933–938 (2013)

59. Sun,W., Fokoue, A., Srinivas, K., Kementsietsidis, A., Hu, G., Xie,
G.T.: Sqlgraph: an efficient relational-based property graph store.
In: SIGMOD, pp. 1887–1901 (2015)

60. Tanon, T.P., Weikum, G., Suchanek, F.M.: YAGO 4: A reason-able
knowledge base. In: ESWC, pp. 583–596 (2020)

61. Tian, Y., Xu, E.L., Zhao, W., et al.: IBM db2 graph: supporting
synergistic and retrofittable graph queries inside IBMdb2. In: SIG-
MOD, pp. 345–359 (2020)

62. Tsialiamanis, P., Sidirourgos, L., Fundulaki, I., et al.: Heuristics-
based query optimisation for SPARQL. In: EDBT, pp. 324–335
(2012)

63. Vazirani, V.V.: Approximation Algorithms. Springer-Verlag,
Berlin, Heidelberg (2001)

64. Xiao, G., Calvanese, D., Kontchakov, R., Lembo, D., Poggi, A.,
Rosati, R., Zakharyaschev, M.: Ontology-based data access: a sur-
vey. In: IJCAI, p. 5511–5519 (2018)

65. Zilio, D.C., Rao, J., Lightstone, S., et al.: Db2 design advisor:
integrated automatic physical database design. In: VLDB, pp.
1087–1097 (2004)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	HERMES: data placement and schema optimization for enterprise knowledge bases
	Abstract
	1 Introduction
	2 Hermes System
	2.1 Domain ontology
	2.2 Ontology query language

	3 Data placement
	3.1 Data store capability and query operation descriptions
	3.1.1 Data store capability description
	3.1.2 Query operation description

	3.2 Data placement orchestrator
	3.2.1 Workload analyzer & hypergraph-based workload modeling
	3.2.2 Ontology-based data partitioner

	4 Schema optimization
	4.1 Relationship rules
	4.2 Property graph schema optimization
	4.2.1 Concept-centric algorithm
	4.2.2 Relation-centric algorithm

	5 Experimental study
	5.1 Experimental setup
	5.2 Effectiveness of data placement algorithms
	5.3 Impact of data placement on query execution
	5.4 Property graph schema quality
	5.5 Graph query execution
	5.6 Efficiency of property graph schema algorithms

	6 Related work
	7 Conclusion
	References

