Projects
Amazon DataZone 1
- Amazon DataZone is a new data management service that makes it faster and easier for customers to catalog, discover, share, and govern data stored across AWS, on-premises, and third-party sources.
Ontology Learning and Reasoning
- Create an ontology from structured and semi-structured data sources 
- Identify mapping from the data ontology to the standard ontology 
- Extract the relevant sub-graph from the standard ontology to enhance the data ontology 
- Use the enhanced data ontology to bootstrap conversational space for ontology enhanced query answering 
Natural Language Querying over Knowledge Bases 1 | 2
- Focused on natural language querying over knowledge bases, as well as platforms and infrastructure for large-scale data analysis, storage and querying of knowledge bases. 
- Built cognitive querying systems that utilize ontologies, integrate both semi-structured and unstructured content sources, and expose natural language interfaces. 
Intelligent Video Analytics 1 | 2
- Designed an intelligence video analytics system that blends, in real-time, the intelligence in high-velocity streaming data sources with contextual information from many other data sources to generate complex, data-driven insights. 
- Built a complex situation detection solution based on spatio-temporal relationships among objects extracted from video streams. 
Event Trend Analytics 1 | 2
- Designed event trend optimization techniques that trade off between CPU and memory costs to execute event queries with Kleene patterns over high-rate event streams. 
- Proposed an online aggregation approach to dynamically compute event trend aggregation without ever constructing the actual trends. 
Scalable Complex Event Analytics
- Designed a share-aware optimizer that identifies opportunities for effective shared processing among CEP queries by leveraging time-based event correlations. 
- Developed a scalable framework that offers stream transactions to assure concurrent shared maintenance and reuse of sub-patterns across queries. 
Recurring Query Processing on Big Data
- Built a scalable data infrastructure that treats recurring query over big evolving data as first class citizens during query processing. 
- Tackled issues from massive query workloads to approximate processing to achivew low-latency execution with limited resources. 
Robust Distributed Stream Processing
- Designed a new query optimization paradigm capable of coping with data fluctuations in distributed data streams arriving in large volumes, and with near-real time response requirement.
